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Preface

This volume contains full papers, extended abstracts and demonstration abstracts of talks
presented at the 14th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2024), held from August 27 to August 30, 2024, in Copenhagen,
Denmark.

PATAT is a biennial conference dedicated to all theoretical and practical aspects of
computer-aided timetable generation. It serves as the main forum for the EURO Work-
ing Group on Automated Timetabling (EWG-PATAT), an international community of
researchers, practitioners and vendors. PATAT has been supporting a range of competi-
tions and challenges, investing back in the timetabling community for the benefit of the
field. Previous PATAT conferences have been held in Edinburgh, UK (1995), Toronto,
Canada (1997), Konstanz, Germany (2000), KaHo St.-Lieven, Gent, Belgium (2002),
Pittsburgh, PA USA (2004), Brno, Czech Republic (2006), Montréal Canada (2008),
Belfast, Northen Ireland (2010), Son, Norway (2012), York, United Kingdom (2014),
Udine, Italy (2016), Vienna, Austria (2018), Leuven, Belgium (2022).

This volume includes the abstracts of four invited talks by Kaisa Miettinen, Stefan
Røpke, Sigrid Knust and Nysret Musliu, the abstract of one invited tutorial by Kate
Smith-Miles, and 45 contributed submissions consisting of 12 full papers, 30 extended
abstracts and 3 demonstration abstracts. Each contribution went through a review process
consisting of two or three single-blind reviews. No particular precaution was adopted for
handling contributions co-authored by committee members. The accepted submissions
(45 out of 50) were presented in two parallel tracks at the conference.

We thank the sponsors of PATAT 2024 for their support: Eventmap, EWG European
Working Group in Automated Timetabling and Macom (Lectio). We thank the members
of the steering and program committees, who agreed to review the submissions. Finally,
we are thankful to Katrine Heide Sørensen for secretarial support at the Technical
University of Denmark.

Copenhagen and Odense, Thomas Jacob Riis Stidsen
August 2024 Marco Chiarandini

Program Chairs
PATAT 2024
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Part I

Invited Talks





Some Views to Multiobjective Optimization with a Focus
on Interactive Methods

Kaisa Miettinen

Faculty of Information Technology
University of Jyväskylä (JYU), Finland

Abstract

In various real decision problems, we must optimize several conflicting objective func-
tions simultaneously. This means that we must solve multiobjective optimization prob-
lems. These problems have so-called Pareto optimal solutions representing different
trade-offs and they cannot be ordered mathematically without some additional infor-
mation. Typically, we assume that a domain expert called a decision maker provides
preference information to guide the solution process. By applying appropriate methods,
we can find the best balance among the trade-offs. In this talk, I classify multiobjective
optimization methods based on the role of the decision maker and devote most attention
to interactive methods, where the decision maker augments the problem formulation
with domain expertise. The decision maker directs the iterative solution process with
one’s preferences to find the most preferred solution. At the same time, the decision
maker gains insight into the interdependencies and trade-offs among the conflicting
objective functions and can get convinced of the quality of the most preferred solu-
tion. I demonstrate the advantages of applying interactive methods with some example
problems. In addition, I give a brief overview of the modular, open-source software
framework DESDEO containing different interactive methods



Decomposition methods for sports scheduling problems

Sigrid Knust

Institute of Computer Science
University of Osnabrück, Germany

Abstract

Generating a sports league schedule is a challenging task due to the variety of different
requirements which have to be addressed. The basic problem is to find a schedule
for a single/double round robin tournament in which every team plays against each
other team exactly once/twice, and every team plays one game per round. Additionally,
several side constraints have to be respected, e.g., the avoidance of breaks (consecutive
home/away games of a team), fairness issues (like opponent strengths, carry-over effects),
the consideration of regions or wishes of teams and media.

This variety of specific problem settings has led to a multitude of alternative ap-
proaches (cf., e.g. [1] [2], [3], [4]). Due to its complexity, the problem is often solved by
decomposition techniques, i.e., it is divided into different subproblems which are solved
consecutively. In this talk, the following three approaches are discussed:

In a “first-schedule, then-break” approach, in the first stage it is decided which teams
play against each other in which round. Afterwards, in the second stage home-away
patterns (with a minimum number of breaks) corresponding to the pairings from the
first stage are determined. In a “first-break, then-schedule” approach, at first home-away
patterns are generated for the teams. Then, the subproblem of the second stage consists
in finding a corresponding feasible schedule. In a “first assign modes, then schedule”
approach, at first for each game a home team is fixed. In the second stage, all games are
scheduled in these fixed modes taking into account additional constraints.

References

1. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers & Operations Research 37, 1–19 (2010).

2. Rasmussen,R.V.,Trick,M.A.:Round robin scheduling —a survey. EuropeanJournal
of Operational Research 188, 617-636 (2008).

3. Ribeiro, C.C.: Sports scheduling: problems and applications. International Trans-
actions in Operational Research 19, 201-226 (2012).

4. Van Bulck, D., Goossens, D., Schönberger, J., Guajardo, M.: RobinX: A three-field
classification and unified data format for round-robin sports timetabling. European
Journal of Operational Research 280, 568–580 (2020).



AI Techniques for Timetabling and Scheduling Problems

Nysret Musliu

Faculty of Informatics
Technical University of Vienna, Austria

Abstract

In this talk, we will first provide an overview of various AI-based methods proposed
by our lab for solving problems in application domains such as employee timetabling
and project scheduling. The topics covered will include solver-independent modelling,
constraint programming, and hybrid techniques. In the second part of the talk, we
will discuss methods that utilize machine learning techniques for automatic algorithm
selection and heuristic algorithm design. We will also briefly present innovative decision
support systems that incorporate our solution methods and an approach for preference
explanation to guide decision-makers toward solutions that align with their expectations.
The talk will conclude with a discussion of future challenges in the domain of scheduling
and timetabling.



Adaptive Large Neighborhood Search

Stefan Røpke

Department of Technology, Management and Economics
Technical University of Denmark

Abstract

Adaptive Large Neighborhood Search (ALNS) is a metaheuristic that extends the Large
Neighborhood Search heuristic (LNS) proposed by Paul Shaw. While traditional LNS
employs a single method for destroying and repairing solutions iteratively, ALNS in-
troduces multiple such methods. The algorithm keeps track of the performance of each
method and attempts to utilize the best methods for the instance at hand. ALNS allows
the user to incorporate domain-specific knowledge by adding tailored destroy and repair
methods that can exploit the problem’s structure or even be targeted at a subset of the
instances that need to be solved.

This talk briefly introduces the ALNS algorithm and explores applications to time-
tabling problems. We discuss the relationship between ALNS and hyperheuristics and
review efforts to parallelize ALNS. Additionally, we explore the integration of machine
learning into ALNS, particularly focusing on enhancing the selection of destroy and
repair methods.



Stress-testing algorithms via Instance Space Analysis

Kate Smith-Miles

School of Mathematics and Statistics
University of Melbourne, Australia

Abstract

Instance Space Analysis (ISA) is a recently developed methodology to support ob-
jective testing of algorithms. Rather than reporting algorithm performance on average
across a chosen set of test problems, as is standard practice, ISA offers a more nuanced
understanding via visualisation of the unique strengths and weaknesses of algorithms
across different regions of the instance space that may otherwise be hidden on aver-
age. It also facilitates objective assessment of any bias in the chosen test instances,
and provides guidance about the adequacy of benchmark test suites and the gener-
ation of more diverse and comprehensive test instances to span the instance space.
This tutorial provides an overview of the ISA methodology, and the online software
tools (seematilda.unimelb.edu.au) that are enabling its worldwide adoption in many dis-
ciplines. Several case studies from classical operations research problems will be pre-
sented to illustrate the methodology and tools, including timetabling, travelling salesman
problem, 0-1 knapsack; and applications to machine learning will also be highlighted.
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Part II

Full Papers





An unconstrained binary model for the Uncapacitated
Examination Timetabling Problem

Angelos Dimitsas1 [0000�0002�7892�046-] , Panayiotis Alefragis2 [0000�0003�1113�8462] ,
Christos Valouxis3 [0000�0001�6832�2311] , and Christos Gogos1 [0000�0002�1313�1750]

1 Dept. of Informatics and Telecommunications, University of Ioannina, Arta, Greece
{a.dimitsas,cgogos}@uoi.gr

2 Dept. of Electrical and Computer Engineering, University of Peloponnese,Patras, Greece
alefrag@uop.gr

3 Dept. of Electrical and Computer Engineering, University of Patras, Greece
cvalouxis@upatras.gr

Abstract. Quantum computing is offering a novel perspective for solving com-
binatorial optimization problems. To explore the possibilities offered by quantum
computers, the problems can be formulated as Quadratic Unconstrained Binary
Optmization (QUBO) models, taking under consideration the limitations of the
current state of Quantum Annealers. QUBO represents a class of optimization
problems that involve binary decision variables and quadratic objective functions.
It has applications in a wide range of fields and can be solved using classical or
quantum optimization techniques, depending on the problem size and complexity.
In this work, we provide a QUBO formulation of the Uncapacitated Examination
Timetabling Problem along with modifications for symmetry reduction in the
context of solving it on a quantum computer. We also introduce a test-bed dataset
of small instances suitable for modern annealers, along with optimal solutions to
serve for comparison. To prove the efficiency of the formulation we test our model
in D-Wave’s hybrid annealer.

Keywords: QUBO, Quantum Annealing, Scheduling, Hybrid Quantum Comput-
ing, UETP.

1 Introduction

Educational timetabling problems involve the task of scheduling courses, classes, exam-
inations, teachers, and resources within an educational institution to optimize various
objectives while satisfying constraints. These problems are common in schools, colleges,
and universities, and they can be quite complex.

Examination timetabling is a critical administrative task in educational institutions
that involves scheduling examinations for students, ensuring that all examinations are
conducted smoothly, and minimizing conflicts or constraints. This process can be com-
plex due to various factors, including room availability, student preferences, and the
need to optimize resource utilization.

The UETP is a specific variant of the examination timetabling problem that focuses
on scheduling a set of examinations within a given time frame and without considering
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room capacities or constraints related to room allocation. In other words, it assumes
that all examinations can be accommodated in any available room, making it a simpli-
fied version of the more complex capacitated examination timetabling problem. UETP
has practical applications in educational institutions where examinations need to be
scheduled within a specific time frame without considering room constraints. It is a
foundational problem in examination timetabling, and solutions to UETP can be further
extended to handle capacitated versions of the problem.

While UETP does not consider room capacities, it still has constraints to satisfy:

– No two examinations for the same student should be scheduled in the same time slot
(to avoid conflicts).

– Each examination can only be scheduled once.

To encourage greater preparation and less stress for the students, their schedules
should also contain sufficient gaps between examinations for all students. Carter et
al. [3] introduced in 1996 the problem along with a dataset made of real-life instances,
and numerous researchers have experimented with this dataset since then.

Quantum annealing is a specialized quantum computing approach used to solve
optimization problems. It is considered one of the quantum computing paradigms,
alongside with other methods like quantum gate-based computing. Quantum annealers
(QAs) are designed to tackle optimization problems by leveraging quantum properties
to potentially find more efficient solutions than classical computers for specific types
of problems. Quantum annealing and QUBO are closely related concepts in the field
of quantum computing and optimization. QUBO is a mathematical formulation used to
express certain optimization problems, and quantum annealing is a quantum computing
approach that can be applied to solve QUBO problems.

An outline of the paper follows. Section 2 contains a glimpse of the broad bibli-
ography regarding the UETP and education timetabling in general along with QUBO
formulations of other scheduling problems. Section 3 provides a brief description of
the problem along with symmetries that have been identified in the past. Section 4
introduces the dataset we created to allow instances of the UETP to fit in modern QAs.
Section 5 contains the QUBO model accompanied with a minimal example. Finally, in
Section 6 we demonstrate the results obtained by testing our dataset using D-Wave’s [1]
cloud-based hybrid solvers.

2 Related Work

The related work about the examination timetabling problem in general and UETP in
particular is very large. We refer the interested readers to the survey papers [9] and [4]
while our recent paper [5] uncovers some of the symmetries that are found in UETP.

Regarding QUBO a nice introduction to the subject can be found at [6]. More
specifically, QUBO models have been tried for several scheduling and timetabling prob-
lems [11]. For example the nurse scheduling problem has been addressed using QUBO in
[7]. Other examples can be found in [8], [12]. Another resource that is worth mentioning
is [10] which presents a list of QUBO formulations for several optimization problems.
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Quantum computing is a fascinating relatively new computing paradigm that holds
the promise of surpassing the limits of computation that currently exist. It is based on
a new non Von Neumann architecture and several technology companies invest large
amounts of money and resources in an effort to realize such systems. D-Wave is a
leading company for quantum computing and in this paper we use the so-called hybrid
solver of D-Wave for our experiments. An evaluation of quantum and hybrid solvers for
combinatorial problems can be found at [2] published on arXiv.

3 Problem Description

UETP instances contain students, the examinations they participate and the total number
of available periods % for the entire timetable. Uncapacitated, as indicated, denotes the
absence of room restrictions. Additionally, none of the other restrictions that are typical
found in actual examination scheduling exist. These limitations include the availability
of the examiners, the order of the examinations, the grouping of the times on weekdays,
and others. Consequently, UETP can be seen as an abstraction of the actual examination
scheduling problem.

An instance can be thought as an undirected weighted graph G = (V,E), where
vertices V represent examinations and edges E represent common students between
examinations. The number of students who take both of the examinations at the edge’s
ends makes up the edge’s weight ,E1 ,E2 . The only strict requirements are that a) each
examination should only be scheduled once, and b) no student should be permitted to
take more than one examination per period. The quality of a timetable is measured by
an objective function. Each student applies a penalty of 16, 8, 4, 2, 1 for intervals of 1,
2, 3, 4 or 5 periods between each of his examinations respectively. Notation used in this
paper is shown in Table 1.

Table 1: Notation used for describing UETP.
Sets
V Set of examinations.
E Set of pairs of examinations with students in common.
P Set of periods.
Constants

�?8 ,? 9

25� | ?8�? 9 |
, if 0 < |?8 � ? 9 |  5

0, otherwise.
,E1 ,E2 Total number of common students between examinations E1 and E2.

GE,? =
⇢
1, if examination E is placed in period ?.
0, otherwise. 8E 2 V 8? 2 P (1)

min
’

(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 ,?1GE2 ,?2 (2)
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s.t. GE1 ,? + ?E2 ,? <= 1 8(E1, E2) 2 E 8? 2 1..% (3)

%’
?=1

GE,? = 1 8E 2 V (4)

The penalty factor for the intervals of periods is calculated as in Table 1. Binary
decision variables in Equation 1 denote the period that each examination is placed to.
The objective function in equation 2 simply totals the penalties for all examinations.
Finally, constraint 3 ensures than no two examinations sharing students are in the same
period and constraint 4 obligates each examination to be placed once and only once.

3.1 Bidirectional Timetable Symmetry

It is easy to observe that if period ? 2 1..%, changes to %�?+1 for all examinations, then
we effectively get the original solution reversed. Since the cost is computed based on the
distance among periods of scheduled examinations, the objective function is unaffected
as demonstrated in equation 5.

’
(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 ,?1GE2 ,?2 =

’
(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 , (%�?1+1)GE2 , (%�?2+1) (5)

4 Dataset

Different datasets regarding the UETP problem were made public over the years, but
the sheer size of the included instances make them to big to fit in current state of the art
annealers. While the number of qubits required for some small instances is acceptable,
the nature of the problem i.e., the relation of two exams with students in common, results
in an increase of the Non Zero Couplings in the matrix that is sent to the solver (usually
called a QMatrix) provided to the solver, thus making most of these instances unfit for
the annealer.

In order to demonstrate the proof of concept we opted to generate a dataset consisting
of 50 small instances able to run on current annealers. To create an instance we randomly
choose between 3 and 7 exams and generate a complete graph with them (all of them have
students in common) the number of the periods available equals the number of nodes in
the complete graph to make the instance compact e.g., there exists no solution with an
empty period, then we proceed to add more exams and more conflicts while keeping the
number of conflicts under 60. The students in common between the conflicting exams
(the weight of their edge) is chosen arbitrarily between 1 and 100. However, this number
could be higher as this will not result in more variables.

To test the annealer against the optimal solutions we employ GoogleOR-Tools CP-
SAT Solver to solve the problem instances to optimality. The characteristics and optimal
solutions values are presented in Table 2.
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Table 2: Instances and characteristics
Instance 1 2 3 4 5 6 7 8 9 10
Examinations 20 19 8 13 22 19 20 17 18 20
Periods 6 6 5 5 4 6 7 5 7 6
Conflict density 0.23 0.28 0.37 0.55 0.19 0.25 0.24 0.3 0.27 0.27
Optimal 10512 10736 13540 17376 16152 9916 7458 13242 8365 12720
Instance 11 12 13 14 15 16 17 18 19 20
Examinations 24 24 20 18 19 15 23 17 27 8
Periods 4 4 6 5 4 5 5 5 7 6
Conflict density 0.15 0.15 0.23 0.29 0.25 0.38 0.17 0.33 0.12 0.38
Optimal 16312 13460 10018 13088 16700 12724 9640 11704 8281 12255
Instance 21 22 23 24 25 26 27 28 29 30
Examinations 19 19 26 17 20 19 27 23 19 17
Periods 4 5 7 7 6 7 7 7 6 4
Conflict density 0.25 0.27 0.14 0.29 0.24 0.24 0.13 0.17 0.24 0.32
Optimal 15592 15628 5316 7464 10445 8301 5718 9265 7700 19680
Instance 31 32 33 34 35 36 37 38 39 40
Examinations 21 25 17 15 22 26 20 17 18 19
Periods 6 6 7 4 4 7 6 5 5 7
Conflict density 0.21 0.16 0.33 0.39 0.19 0.14 0.24 0.31 0.29 0.25
Optimal 8749 8834 8780 20364 17412 6735 11691 12356 14434 7221
Instance 41 42 43 44 45 46 47 48 49 50
Examinations 24 15 17 21 23 8 18 24 19 18
Periods 7 5 5 4 6 6 5 6 6 6
Conflict density 0.16 0.44 0.33 0.23 0.17 0.38 0.27 0.18 0.25 0.3
Optimal 5885 15108 18630 24604 8456 9731 7964 8723 9407 9654
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5 Unconstrained Binary Model

The general form of a QUBO objective function can be expressed as follows:

min
=’
8=1

@88G8 +
=�1’
8=1

=’
9=8+1

@8 9G8G 9

where:

– G8 are binary variables.
– = is the number of binary variables.
– @88 represents the linear coefficient associated with variable G8 .
– @8 9 represents the quadratic coefficient associated with the interaction between

variables G8 and G 9 .

The model for a QUBO problem will always be the same. What makes the difference
is the choice of the values in the QMatrix. For this problem our binary decision variables
assume the value 1 when a specific exam is scheduled in a period. For exams in conflict
the corresponding quadratic coefficient is calculated as �?1 ,?2,E1 ,E2/2. We divide by
two because the QMatrix is symmetric. As the nature of QUBO formulation is inherently
unconstrained we choose a large enough number " to impose penalties and incentives
in the objective function that can act as constraints. We chose " to equal the sum of
all edges multiplied by 16 to ensure that no worse solution exists when you violate
the conflicting exams constraint 3. To provide the incentive to schedule all exams, as
dictated by constraint 4, we set the value of an exam being placed to �" and to " if
the exam is placed twice.

We use a minimal problem presented in Figure 1 to demonstrate the resulting
QMatrix in Table 3. Note that this toy example involves 5 examinations and 3 periods.

1

2

100

3

150
450200 52

Fig. 1: Minimal problem graph (5 examinations, 3 periods).

We can also choose to eliminate the bidirectional timetable symmetry discussed in
Section 3.1 by restricting any two conflicting exams to be placed in a certain order. If
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Table 3: Q Matrix
⇢1%1 ⇢1%2 ⇢1%3 ⇢2%1 ⇢2%2 ⇢2%3 ⇢3%1 ⇢3%2 ⇢3%3 ⇢4%1 ⇢4%2 ⇢4%3 ⇢5%1 ⇢5%2 ⇢5%3

⇢1%1 -M M M M 800 400 M 1200 1200 M 400 200 0 0 0
⇢1%2 M -M M 800 M 800 1200 M 1200 400 M 400 0 0 0
⇢1%3 M M -M 400 800 M 1200 1200 M 200 400 M 0 0 0
⇢2%1 M 800 400 -M M M M 1600 800 0 0 0 0 0 0
⇢2%2 800 M 800 M -M M 1600 M 1600 0 0 0 0 0 0
⇢2%3 400 800 M M M -M 800 1600 M 0 0 0 0 0 0
⇢3%1 M 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0
⇢3%2 1200 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0
⇢3%3 1200 1200 M 800 1600 M M M -M 0 0 0 0 0 0
⇢4%1 M 400 200 0 0 0 0 0 0 -M M M M 16 8
⇢4%2 400 M 400 0 0 0 0 0 0 M -M M 16 M 16
⇢4%3 200 400 M 0 0 0 0 0 0 M M -M 8 16 M
⇢5%1 0 0 0 0 0 0 0 0 0 M 16 8 -M M M
⇢5%2 0 0 0 0 0 0 0 0 0 16 M 16 M -M M
⇢5%3 0 0 0 0 0 0 0 0 0 8 16 M M M -M

we choose that exam 1 must be scheduled before exam 3 the binary value ⇢1%1 is not
needed anymore as exam 1 cannot be placed in the first period and for each combination
where exam 1 is scheduled before exam 3 we again provide the value of " to place a
heavy penalty if such a combination is selected. The QMatrix with these modifications
is presented in Table 4.

Table 4: Q Matrix without bidirectional timetable symmetry
⇢1%2 ⇢1%3 ⇢2%1 ⇢2%2 ⇢2%3 ⇢3%1 ⇢3%2 ⇢3%3 ⇢4%1 ⇢4%2 ⇢4%3 ⇢5%1 ⇢5%2 ⇢5%3

⇢1%2 -M M 800 M 800 1200 M M 400 M 400 0 0 0
⇢1%3 M -M 400 800 M 1200 1200 M 200 400 M 0 0 0
⇢2%1 800 400 -M M M M 1600 800 0 0 0 0 0 0
⇢2%2 M 800 M -M M 1600 M 1600 0 0 0 0 0 0
⇢2%3 800 M M M -M 800 1600 M 0 0 0 0 0 0
⇢3%1 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0
⇢3%2 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0
⇢3%3 M M 800 1600 M M M -M 0 0 0 0 0 0
⇢4%1 400 200 0 0 0 0 0 0 -M M M M 16 8
⇢4%2 M 400 0 0 0 0 0 0 M -M M 16 M 16
⇢4%3 400 M 0 0 0 0 0 0 M M -M 8 16 M
⇢5%1 0 0 0 0 0 0 0 0 M 16 8 -M M M
⇢5%2 0 0 0 0 0 0 0 0 16 M 16 M -M M
⇢5%3 0 0 0 0 0 0 0 0 8 16 M M M -M

6 Experiments and results

Our experiments were performed using the hybrid Quantum Annealer provided by D-
Wave. A time limit of 20 seconds was given for each problem instance and the results
are presented in Table 5. The justification for using only 20 seconds of running time per
instance is due to the small sizes of the problems and the limited time that the hybrid
solver of D-Wave can use the Quantum infrastructure for the non-pay version of D-Wave
Leap.
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Results show that there is potential for using Quantum Annealers for solving UETP
problems. Some results are optimal, while others are near optimal, as can be seen in
Figure 2 which shows how far from the optimal solution the results for the 50 problem
instances are.

Table 5: Results
Instance 1 2 3 4 5 6 7 8 9 10
Decision Variables 119 113 79 64 87 113 139 84 125 119
Non Zero Couplings 1950 2061 1290 1215 908 1851 2596 1230 2370 2226
Objective 12082 12687 13540 17376 16784 11265 9515 13302 9176 14899
Difference 3.47% 3.26% 11.38% 0.00% 6.62% 0.60% 6.58% 4.12% 3.56% 4.16%
Instance 11 12 13 14 15 16 17 18 19 20
Decision Variables 95 95 119 89 75 74 114 84 188 95
Non Zero Couplings 864 864 1950 1310 842 1165 1405 1330 2669 1926
Objective 17504 15336 11244 13996 16700 13312 11346 12630 11224 12255
Difference 0.00% 0.00% 0.96% 3.18% 6.06% 0.11% 2.31% 3.94% 1.76% 2.88%
Instance 21 22 23 24 25 26 27 28 29 30
Decision Variables 75 94 181 118 119 132 188 160 113 67
Non Zero Couplings 826 1375 2729 2277 2004 2392 2904 2645 1821 814
Objective 15592 16662 8448 8584 12264 9922 9499 11914 9091 19680
Difference 1.68% 0.00% 1.13% 4.06% 1.90% 7.54% 0.00% 0.00% 1.60% 3.49%
Instance 31 32 33 34 35 36 37 38 39 40
Decision Variables 125 149 118 59 87 181 119 84 89 132
Non Zero Couplings 1971 2229 2524 770 880 2788 2016 1250 1325 2439
Objective 10426 11357 10342 20364 17968 10187 12908 12564 14794 8798
Difference 4.01% 4.45% 12.42% 6.25% 4.14% 0.00% 4.37% 6.25% 4.08% 0.79%
Instance 41 42 43 44 45 46 47 48 49 50
Decision Variables 167 74 84 83 137 95 89 143 113 107
Non Zero Couplings 2638 1320 1335 946 1977 1890 1250 2214 1857 1974
Objective 8789 15108 18790 24604 11036 10404 8156 11369 11097 11133
Difference 10.20% 2.47% 0.42% 0.62% 4.92% 9.90% 0.00% 0.21% 0.00% 1.67%

7 Conclusions

In this paper we tried to present a proof of concept idea about using a QUBO formulation
and a Quantum Annealer solver for solving UETP. We created a custom dataset of small
problem instances keeping in mind the current limitations of the Quantum Annealers
and modeled the problem according to QUBO. We then run experiments on the non-pay
version of D-Wave’s Leap architecture. Our results are promising, although they do not
manage to find optimal solutions for all problem instances given only 20 seconds for
each problem, they achieve near optimal results for most of the cases.
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Fig. 2: Difference in percentage from the optimal solution for 50 problem instances.
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Abstract. The Bus Driver Scheduling Problem is a combinatorial optimisation
problem with important real-world applications. The goal is to assign bus drivers to
predetermined bus tours in order to minimise an objective function that considers
the total time of each employee’s one-day work shift and their dissatisfaction.
Due to the amount of complex rules specified by a collective agreement and
European laws, this problem is highly constrained. Thus, exact methods are com-
putationally intractable. In recent work, two metaheuristics have been proposed
to solve this problem: Large Neighbourhood Search (LNS) and Construct, Merge,
Solve and Adapt (CMSA). In the literature, 65 real-world-like instances have been
used to test the algorithms. Among those instances, LNS seems to outperform
CMSA; nevertheless, the reason was still obscure.
In order to investigate the reason, we use Instance Space Analysis to show the
weaknesses and strengths of the two solution methods. First, we greatly extend
an instance generator to be able to generate varied real-world-like and synthetic
instances. This allows us to expand the previous set of instances from the literature.
We then present a set of features that describe the hardness of the instances. The
features consider the structure of the instance, such as the average break length for
each vehicle or the distribution of bus tours in the city. We observe that even if LNS
outperforms CMSA in real-world-like instances, it does not for some synthetic
ones.
Using Instance Space Analysis, each instance is projected into a 2D plane based
on selected features. We see clusters of instances in the instance space, and the
real-world-like are in the centre. The bus tour structure appears to have an impact
on the performance of the algorithms. Using this information, we can gain insights
into the weaknesses and strengths of the two algorithms.

Keywords: Instance Space Analysis, Bus Driver Scheduling Problem, Schedul-
ing, Combinatorial Optimisation
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1 Introduction

This work deals with the Bus Driver Scheduling Problem and how to (1) generate new
diverse instances and (2) how to objectively assess how the state-of-the-art algorithms
perform on those diverse instances.

The Bus Driver Scheduling Problem (BDSP) is a sub-problem of the general Trans-
portation Planning System, that includes Vehicle Scheduling, Crew Rostering, and
Timetabling [11]. The goal is to assign bus drivers to predetermined routes while min-
imising a specified objective function that considers operating costs as well as employee
dissatisfaction with their work shifts.

The problem has a clear practical relevance. Recently, a variant of the BDSP with
complex break constraints has been studied [2,3,1,7,5]. In this setting, there a set of
65 real-world-like instances (named Realistic) and performance results for two state-
of-the-art algorithms: CMSA [7] and LNS [5]. Based on the 65 Realistic instances,
LNS appears to outperform CMSA. However, we must scrutinise the diversity of these
test instances and seek to ensure they span a range of instance characteristics before
conclusions can be drawn about the merits of each algorithm.

Instance Space Analysis [10] is a methodology that allows the diversity of a set of
test instances to be visually examined, and insights into the strengths and weaknesses of
algorithms, across the mathematically defined boundaries of the instance space, to be
observed.

Our research contributions of this paper are:

– We developed an instance generator with whom we have generated diverse instances.
– We propose a set of features of the test instances to characterise their similarities

and differences.
– We compare the two main state-of-the-art algorithms for the BDSP on real-world-

like and synthetic instances.
– We scrutinise the instance space and point out the regions of instance space that are

not yet sufficiently covered.

This paper is organised as follows: Section 2 describes the Bus Driver Scheduling
Problem in detail. In Section 3 we present the Instance Space Analysis framework,
and the meta-data we built for the Instance Space Analysis. In Section 4, we show and
visualise the Instance Space Analysis. Finally, in Section 5 we present the conclusions
of the work and its future possible developments.

2 The Bus Driver Scheduling Problem

The investigated Bus Driver Scheduling Problem deals with the assignment of bus
drivers to vehicles that already have a predetermined route for one day of operation. The
problem specification is taken from the literature [2].

2.1 Problem Input

The input of the BDSP consists in three pieces of data:
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– For a set % of positions (for instance, a set of bus stops), a time distance matrix
⇡ = (38 9 ) 2 R |% |⇥ |% | is given, where 38 9 represents the time needed for an employee
to go from position 8 to 9 when not actively driving a bus. If no transfer is possible,
then 38 9 = " , where " is a very large number. If 8 < 9 , then 38 9 is called passive
ride time, whereas 388 represents the time it takes to switch vehicle at the same
position, but is not considered passive ride time.

– For each position ? 2 % two values startWork? and endWork?: they represent
respectively the amount of working time required to start or end a work shift at that
position.

– A set ! of bus legs: each leg ✓ 2 ! is a 5-tuple:

✓ = (tour✓ , startPos✓ , endPos✓ , start✓ , end✓),

representing the trip of a vehicle between two stops at a certain time:
• tour✓ 2 N is the ID of the vehicle
• startPos✓ , endPos✓ 2 % are respectively the starting and the ending positions of

the leg
• start✓ 2 R is the time when the vehicle departs from position startPos✓ 2 R
• end✓ 2 R is the time at which the vehicle arrives to position endPos✓

Legs with the same tour C do not overlap: the intervals (start✓ , end✓) for ✓ such that
tour✓ = C are disjoint. The set ! is totally ordered by start, using tour as tie-breaker.

✓ tour
✓

start
✓

end
✓

startPos
✓

endPos
✓

1 1 420 495 0 1
2 1 520 530 1 2
3 1 540 550 2 1
4 1 558 570 1 0

Table 1: A Bus Tour Example

Table 1 shows a short example of one particular bus tour. The vehicle starts at time
420 (6:40 AM) at position 0, does multiple legs between positions 1 and 2 with waiting
times in between and finally returns to position 0.

For Realistic instances, the number of legs is proportional to the number of bus tours
with approximately =legs ⇡ 10 · =tours.

2.2 Solution

A solution ( to the problem is an assignment ( : ! ! ⇢ , where ⇢ ✓ N is the set of
employees. The number of drivers is not given, but one can imagine setting it as large
as needed to have a feasible solution.

Equivalently, it is useful to represent a solution by a set of shifts, that is the work
scheduled to be performed by a driver in one day [11]. More precisely, the shift of driver



Instance Space Analysis for the Bus Driver Scheduling Problem 23

4 2 ⇢ is the preimage !4 = (
�1 ({4}) with the total order induced by !. Hence, the

notion of consecutive bus legs in a shift is well-defined.
Each shift of a driver 4 2 ⇢ must be feasible according to the following criteria:

– No overlapping bus legs are assigned to 4.
– Changing tour or position between consecutive legs 8, 9 2 !4 requires

start 9 � end8 + 3endPos8 ,startPos 9 .

– The shift !4 respects all hard constraints regarding work regulations as specified
below. These refer to different measures of time related to an employee 4 containing
the set of bus legs !4, as visualised in Figure 1.

start work

✓1

rest

✓2

rest

passive ride

✓3

end work

Working time,4
? ?

Driving time ⇡4

Total time )4

Fig. 1: Example shift [2]

Driving Time Regulations. The driving time of a shift !4 is

⇡4 =
’
82!4

(end8 � start8)

The driving time ⇡4 cannot exceed ⇡max = 9 h. The driving time is subject to additional
rules regarding driving breaks. A driving break between two consecutive bus legs 8 and
9 is

diff
8 9
= start 9 � end8

After at most 4 h of driving time, one of the following has to occur:

– One driving break of at least 30 min.
– Two driving breaks of at least 20 min each.
– Three driving breaks of at least 15 min each.

Once we reach all required breaks, the next block of at most 4 h starts.
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Total Time Regulations. The total time of a shift !4 is the span from the start of work
until the end of work:

)4 = end✓ + endWorkendPos✓ � (start 5 � startWorkstartPos 5 )

where 5 is the first leg and ✓ is the last leg in the shift !4. A hard limit of)4  )max = 14 h
is enforced.

Shift Splits. We say that the employee 4 has a shift split if !4 contains two consecutive
legs 8 and 9 such that:

start 9 � end8 � AendPos8 ,startPos 9 � 3 h

where A?,@ = 3?,@ if ? < @, else A?,? = 0. Denote by split
4

the number of shift splits
and by splitTime

4
the total amount of time the driver 4 spends on a shift split. A shift

split resets the driving time (i.e., it counts as a driving break). A shift contains up to two
shift splits.

Shift splits are unpaid, so they are badly regarded by bus drivers. This will play a
role in designing the objective function.

Working Time Regulations. The working time ,4 cannot exceed 10 h and has a soft
minimum of 6.5 h. If the employee is working for a shorter period of time, the difference
has to be paid anyway.

A minimum rest break is required according to the following options:
– ,4 < 6 h: no rest break;
– 6 h  ,4  9 h: at least 30 min;
– ,4 > 9 h: at least 45 min.

unpaid rest
2 h 2 h

3 h 3 h

paid rest paid rest
centred

30 min break

Fig. 2: Rest break positioning [2]

The rest break may be split into one part of at least 30 min and one or more parts of at
least 15 min. The first part has to occur after at most 6 h of working time. Whether rest
breaks are paid or unpaid depends on break positions according to Figure 2. Every period
of at least 15 min of consecutive rest break is unpaid as long as it does not intersect the
first 2 or the last 2 hours of the shift (a longer rest break might be partially paid and
partially unpaid). The maximum amount of unpaid rest is limited:

– If 30 consecutive minutes of rest break are located such that they do not intersect
the first 3 h of the shift or the last 3 h of the shift, at most 1.5 h of unpaid rest are
allowed;

– Otherwise, at most one hour of unpaid rest is allowed.
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2.3 Objective function

We minimise the objective function combining cost and employee satisfaction defined
in previous work [2]:

I =
’
42⇢

�
2, 0

4
+ )4 + ride4 + 30 change

4
+ 180 split

4

�
(1)

The objective function I represents a linear combination of six criteria for each employee
4. The actual paid working time , 0

4
= max{,4, 390} is the main objective (containing

actual working time and additional payments for short shifts), and it is combined with
the total time )4 to reduce long unpaid periods for employees. The next sub-objectives
reduce the passive ride time ride4 and the number of tours changes change

4
, which is

beneficial for both employees and efficient schedules. The last objective aims to reduce
the number of split shifts split

4
as they are very unpopular. The weights were determined

by previous work [2] based on preferences agreed by different stakeholders at Austrian
bus companies and employee scheduling experts. Details of the objective function can
be found in previous work [2,3,1].

3 Instance Space Analysis

Instance Space Analysis (ISA) is a methodology proposed by Smith-Miles et al. in
2014 [8] that extends the algorithm selection problem framework of Rice [6]. In ISA,
instances are represented as vectors of features. The instances are then projected onto
the 2D plane to separate hard and easy instances. Figure 3 illustrates the Instance Space
Analysis framework.

The problem space P contains all the theoretically possible instances of the BDSP.
Nevertheless, we only have results for a (smaller) subset of instances I ⇢ P, for which
we have experiment results.

The first component of the meta-data are some chosen features, used to characterize
the mathematical and statistical properties of the instances that (1) describe the similar-
ities and differences between instances in (2) have correlation with the performance of
one or more algorithms.

For a given instance G 2 I, we calculate the feature vector f (G), which represents an
instance in the feature space, F .

The second component are the performance measures. We imagine to have the
algorithm space A representing the set of algorithms available to solve all instances in
I. For each algorithm U 2 A and each instance G 2 I, we have a performance measure,
H(U, G): an element of a vector that describes the performance space, Y, and requires a
user-defined measure of “goodness,” such as the objective function value obtained for
a fixed computational budget. Both the features and performance measures for all the
instances in I, and all algorithms in A constitute the meta-data, which we represent
as two matrices L = [ 51, . . . , 5=] 2 R<⇥= and _ = [H1, . . . H=] 2 R0⇥= , where < is
the number of features, = is the number of problem instances, and 0 is the number of
algorithms. Hence, the meta-data is the set {L,_}.

In the original framework proposed by Rice in 1976 [6], a selection mapping (
was learned directly from features and performance. Later, in the expanded framework
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Fig. 3: ISA framework [10] extending the original by Rice [6]

introduced by Smith-Miles et al. in 2014 [8], and extended by Smith-Miles and Muñoz
in 2023 [10], instances are projected from the feature space into a lower-dimensional
2D space using the dimension reduction 6 ( f (G), H(U, G)). It aims to yield an optimal
projection that looks for linear trends in both features and algorithmic performance
across the resultant instance space, in order to gain interpretable insights. This allows us
to get a visualization and enables a more detailed evaluation of algorithmic performance,
as well as algorithm selection based on the position of an instance in the instance space.

In the conceptual framework delineated in the preceding section, the ISA method-
ology involves six fundamental steps:

1. Acquiring experimental meta-data for a designated set of instances I ran across a
set of algorithms A. This includes capturing feature values L for all instances and
recording performance metrics _ for all algorithms across all instances.

2. Creating an instance space through a feature selection process applied to the meta-
data {L,_}, with consideration for a user-defined benchmark for optimal perfor-
mance, encompassing its theoretical boundaries.

3. Employing machine learning techniques to generate predictions for automated al-
gorithm selection.
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4. Establishing algorithm footprints and evaluating associated metrics.
5. Analysing the instance space to extract insights and assess the adequacy of the

available meta-data.
6. Generating supplementary meta-data as needed, and iterating from Step 2 onwards,

or concluding the process if no further iterations are warranted.

3.1 Problem Subset O

In 2020, Kletzander and Musliu [2] proposed a set of 50 real-world-like instances for the
BDSP. This set was later [1] extended with 15 new (again real-world-like) instances. The
instances are publicly available4. For these instances, the number of bus tours ranges
from 10 bus tours (about 70 legs) up to 250 (about 2300 bus legs). These instances are
build to reproduce particular properties seen in a specific industrial use-case, however,
in other settings involving different locations or rule sets, real-world instances might
exhibit very different properties.

In order to cover a larger portion of the instance space, we greatly extended the
original instance generator. It can generate instances with a larger number of bus stops
and more diverse distributions of bus legs and tours during the day. The generator uses
44 parameters.

We changed some of this parameters (one at time) and we then generated 219 new
diverse instances. The new instances are divided into 12 distinct class families (named
sources). A brief description of the types is given in Table 2.

Table 2: The 12 types of instance sources. The third column gives the value for the
existing benchmark instances.

Name Characteristic Standard

breakMax No breaks between two consecutive bus legs [3, 35] min
distanceAvailability The probability that 2 stops are connected is 0.1 0.9
distanceVariation Add uniform U[1,100] distance perturbation U[1,1.2]
legRegularity Probability of reusing the last leg is 0.1 0.9
numStations There are 1000 bus stops 10
morningPeak Morning peak is 5 times the regular demand 1.8
legPeriodMax Max number of break lengths in use per tour is 5 3
shortLeg Every leg length is in the interval [5, 15] min [20, 60] min
gridSpread Bus stops drawn using the distribution N2 (0, 1000) N2 (0, 50)
legMax The maximum leg length is 240 min 60 min
legMin The minimum leg length is 5 min 20 min

Figure 4 shows the demand distribution of two instances. In both cases there is
a significant morning peak when both employees and students need numerous buses
within a brief period, followed by a decrease in activity. With the instance generator, we
can create instances like in Figure 4b, where the peak in the morning is extremely high.

4https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
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(a) Real-life-like (b) Synthetic

Fig. 4: Demand Distribution of active vehicles.

3.2 Algorithm Space A
We ran Instance Space Analysis with two algorithms from previous work.

The first algorithm is Construct, Merge, Solve and Adapt (CMSA) [7], a matheuristic
algorithm.

The second algorithm is Large Neighbourhood Search (LNS) [5], where a destroy
operator creates a sub-instance of the BDSP by removing all the legs of a number
of drivers based on tours that are shared by these drivers. Then, LNS uses Column
Generation as repair operator. Even if the solution of the sub-problem is not optimal, it
is in fact close enough to the optimal with a very small optimality gap.

We set 5 min as timeout for both algorithm. We considered the average of the
objective function values over 5 runs. All executions were performed on a cluster with
11 nodes using Ubuntu 22.04.2 LTS. Each node has two Intel Xeon E5-2650 v4 (max
2.20 GHz, f12 physical cores, no hyperthreading). For each run, we set a memory limit
of 4.267 GB and use one thread. The implementation is in Python, executed with PyPy
7.3.11. Column Generation is implemented in Java, using OpenJDK 20, and CPLEX
22.11 for the master problem.

3.3 Feature Space F
In order to describe the difficulty of each instance, we collect a set of features. A feature
is a number that characterizes a proprieties of an instances. We collect a set of 84
features, described in Table 3.

A special feature is the number of relative relief opportunities of an instance, defined
as follow.

Definition 1 (Relative Relief Opportunity (RRO)). Let ? 2 % be a position and C 2 R.
We define a relief opportunity in ? at time C (in minutes) as the proportion of bus legs
that are passing through position ? in the time window [C, C + 60 min):

''$ (?, C) = |{✓ 2 ! | startPos✓ = ? ^ start 2 [C, C + 60)}|
|{✓ 2 ! | startPos✓ = ?}|

Note that for each position ? 2 %, we can evaluate, e.g., maxC ''$ (?, C) and then
max?2% maxC ''$ (?, C) that tells us what is the maximum relief opportunity across
the positions throughout the day.



Instance Space Analysis for the Bus Driver Scheduling Problem 29

Table 3: Set of 84 features used in Meta-Data. With glorious seven we mean the seven
descriptive statistics: Max, Min, Average, Median, Std, First quartile and Third quartile.

Feature Name Description

Size-related: Dimension of the problem (4 features)
Number of Tours Number of distinct bus tours of the problem
Number of Legs Number of distinct bus legs of the problem
Number of Positions Number of bus stops (positions) used
Number of Active vehicles Max number of active vehicles during the day

Geometry: (1 feature)
Average distance Average distance between bus stops

Bus Tours: Glorious seven across all tours for each feature (35 features)
Total Time per tour Total span time for each tour
Number of breaks per tour Number of breaks between consecutive legs
Number of proper breaks per tour Number of breaks of � 15 min for each tour
Number of legs per tour Number of bus legs for each tour
Number of large legs per tour Number of legs with length � 2 h for each tour

Distributions: Glorious seven across all legs for each feature (14 features)
Drive Bus legs lengths
Breaks statistics Length of breaks between consecutive legs

RRO: Max, Min, Avg, Median, Std across all positions (25 features)
Max RRO Max Number of RROs over the time horizon
Min RRO Min Number of RROs over the time horizon
Mean RRO Mean Number of RROs over the time horizon
Median RRO Median Number of RROs over the time horizon
Std RRO Std Number of RROs over the time horizon

Bin Packing Problem [4]: : is the longest leg length (5 features)
Huge Proportion of legs that have length |✓ | > :/2

Large Proportion of legs with :/3 < |✓ |  :/2

Medium Proportion of legs with :/4 < |✓ |  :/3

Small Proportion of legs with :/10 < |✓ |  :/4

Tiny Proportion of legs with |✓ |  :/10
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Fig. 5: Bus Driver Scheduling Problem instance space defined by Equation (2). We
recognise three main clusters: legMax, shortLeg and all the rest. We also observe that
the Realistic instances (in brown) are in the middle of the Instance Space.

4 Results and Evaluation

We perform the Instance Space Analysis using the Matlab toolkit MATILDA available
from https://matilda.unimelb.edu.au. The settings for MATILDA are the default settings
except the performance threshold set as 0.0.

Summing up, we have 284 instances from two distinct sources, 84 features described
in Table 3, and 2 algorithms: CMSA [7] and LNS [5].

4.1 Instance Distribution

Figure 5 shows the distribution of the instance sources across the instance space. We
notice that Realistic instances are located around the centre of the instance space,
meaning that the feature values are average. Moreover, shortLeg and legMax instances
appear to be close to the theoretical boundary of the Instance Space. Those are instances
where the leg length has drastically changed from the value of the Realistic instances.

The red solid outer line represents the theoretical boundaries made by considering
all the feasible combinations of features and their upper and lower bounds. The red
dotted line instead is the likely boundary.

https://matilda.unimelb.edu.au
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In total, we have 84 features. Equation (2) shows the projection matrix applied
to the ten features after the preprocessing (that includes normalisation and Box-Cox
transformation). We observe that four out of ten features describe the distribution of
drive, that is, the leg length. Two features are related to the Total Time per Tour, i.e., the
maximum and minimum total span of each tour, from the very beginning to the very end.
The other four features represent the distribution of the Relative Relief Opportunities.
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Figure 6 shows the distribution of four features. In Figure 6a we see that, as expected,
the average length of bus legs is very high for legMax instances (where the leg length
belongs to the interval [20, 240]), whereas for shortLeg instances is extremely low
(here the leg length belongs to the interval [5, 15]). Figure 6b shows the distribution
of the standard deviation (over the bus stops) of the minimum number of Relative
Relief Opportunities during the day. This essentially is related to the number of possible
changes/moves that we can do during the day for each bus stop. This value appears to
be very low among the legMax instances, where the legs are usually large and, therefore
the number of possible vehicle changes during the day is reduced. The other two images
are about the total time per tour. In Figure 6c we see a clear distinction between Realistic
instances and the new generated one. This is because the new generated instances have
a lower maximum of length of bus tours. Figure 6d shows the Minimum total time per
tour.

4.2 Algorithm Evaluation

Fig. 7 shows the binary performance distribution of the two algorithms. We observe
that in the middle cluster, LNS performs better than CMSA. However, CMSA appears
to have better results closer to the theoretical boundaries. Fig. 8 shows the prediction of
the Support Vector Machine, supporting this idea.

We believe that the "structure" of the bus tour impacts the performance of the two
algorithms. In particular, LNS removes all the bus legs with some selected bus tours.
In contrast, CMSA randomly generates a number of greedy solutions at every iteration
and, therefore, does not directly exploit the bus tours. LNS seems to perform better than
CMSA for most of the instances (including Realistic), but not for all. We observe that
CMSA gets better solutions for legMax and shortLeg instances. These instances have
very short tours. Thus, LNS does not benefit much from removing all the legs associated
with the same tour. Hence, CMSA (which does not explicitly depend on the structure of
bus tours) provides good results with no significant difference from the others.
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(c) Max Total Time x Tour
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(d) Min Total Time x tour

Fig. 6: Distribution of features. The colors represent the feature values. Axes as defined
by the equation (2).

4.3 Filling the Gaps

Thanks to Instance Space Analysis, we observe that there is still a considerably extended
region between the four clusters in the instance space. This reveals opportunities to
generate new instances in order to fill this gap. A first possible way to do that is by
changing or adding parameters of the instance generator and trying to explore the
instance space.

A more elaborated one is to fix a target (e.g., a portion of the Instance Space to fill
up) and generate instances through a Genetic Algorithm that evolves new instances in
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(b) CMSA

Fig. 7: Binary performance distribution. We see that CMSA performs better in some of
the new generated instances close to the boundary.
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Fig. 8: Algorithm selection using SVM
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the desirable region, as done by Smith-Miles [9]. However, this procedure is problem-
dependent and requires more investigation.

5 Conclusions and Future Investigations

In this paper, we have applied Instance Space Analysis to the Bus Driver Scheduling
Problem for the first time. We evaluated the performance of two metaheuristic techniques
for the BDSP, providing insights into the strength of LNS and the boundaries of its good
performance. We greatly increased the capabilities of the instance generator and extended
the previous set of instances with new, diverse ones. We defined and evaluated a novel
set of features, seeing which features help the most to explain algorithm performance.

In the future, we want to fill the instance space by creating more instances that are
even more diverse than the ones present now. At first, we will consider other public
transportation systems, possibly located in different countries. Then, we will create
instances with new combinations of parameters like long leg lengths and short bus
tour lengths. Ideally, we want to use a Genetic Algorithm to automatically evolve the
instances to fill up certain regions in the Instance Space. The goal is to perform automatic
algorithm selection and outline the region of the instance space where one algorithm
performs better than another. Thanks to this problem’s structure, this will also be helpful
for related problems such as vehicle routing.

Furthermore, we will test other solution methods using other quality metrics, such
as the GAP from the best-known solution or the area under the curve of the trajectory
of solutions found during the search.
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Abstract. Assigning employees to operations effectively is a frequent task across
diverse industry areas. The challenge of this industry application is to provide a
solution method that is flexible enough to be easily adjusted to a specific use case’s
constraints and optimization objectives. In this paper, we introduce and formally
define the Employee Task Distribution Problem (ETDP), describe the highly con-
figurable objective function and propose a solver-independent model that is solved
using different constraint programming and mixed integer programming solvers.
Furthermore, we prove that the ETDP is NP-hard. We evaluate the performance of
our approach using a large benchmark set based on real-life instances and a range
of exact state-of-the-art solvers. The best methods can find optimal solutions for
nearly all benchmark instances within a realistic time bound for practical usage.

Keywords: Employee Task Distribution Problem, Assignment Problem, Con-
straint Programming, Integer Programming

1 Introduction

Across diverse industry areas, employees’ time capacities must be effectively distributed
among operations or tasks on a daily basis. Such an assignment can concern a single or
several shifts and must respect various constraints such as capacity limits and employee
qualifications. Moreover, a good assignment will make use of the available resources
as effectively as possible. What it means to use resources effectively depends on the
specific use case; a trade-off between a selection of the following goals needs to be
found: maximize the overall output, prioritize bottleneck operations, preferably choose
fixed employees instead of temporary or leased staff, maximize the quality of the output,
or schedule employees to work on as few different operations as possible within one
shift. In addition, when planning several shifts simultaneously, it can be desirable to give
employees continuity in their tasks, i.e., to assign employees to the same operations in
subsequent shifts.

In this paper, we introduce and define this novel real-life planning problem; we refer
to it as the Employee Task Distribution Problem (ETDP). This problem originates from
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collaborations with several industry partners. The challenge of solving this practical
problem is twofold: First, the solution method needs to be highly configurable to handle
different practical use cases (with varying constraints and objectives). Second, high-
quality solutions need to be found quickly to allow for a responsive user experience in
industrial settings (the assignments need to be updated often and time efficiently).

The main contributions of this paper are as follows. We propose a solver-independent
mathematical model with flexible constraints and an objective function that can handle
priorities and relative weights of various objective components. This model is imple-
mented using the high-level modeling language MiniZinc [22]. We evaluate our solution
approach in a series of experiments conducted using state-of-the-art Mixed Integer Pro-
gramming (MIP) and Constraint Programming (CP) solvers. Our benchmark set consists
of 216 instances based on real-life scenarios and is publicly available online [15]. The
most successful solvers can find optimal solutions within less than a minute. In addition,
we provide computational hardness results for the ETDP, showing that several variants
of the ETDP are NP-hard. Thereby, we identify which constraints and components of
the objective functions cause computational challenges. These theoretical results are
also reflected in our experimental evaluation.

The remainder of the paper is organized as follows: We formally introduce the ETDP
and define the objective components in Section 2. Our solver-independent mathematical
model is presented in Section 3. We analyze the computational complexity of ETDP in
Section 4 and present our experimental evaluation and results in Section 5.

1.1 Related Work

At its core, the ETDP can be seen as a transportation problem for which the employees
correspond to suppliers, the operations to customers, and the amount shipped from
some supplier to a customer corresponds to the amount of time units the corresponding
employee is assigned to the corresponding operation. For a transportation problem,
every supplier can ship to any of the customers at a given shipping cost per unit.
The goal is to decide on the amounts shipped between every supplier-customer pair
to minimize the total cost of meeting customer demands. In the ETDP context, these
shipping costs can be interpreted as costs related to employee qualifications, employee
types, and operations types. The transportation problem is one of the oldest problems
in operations research [20]. See [25,8] for more details on transportation problems. It
can be solved efficiently in polynomial time by formulating it as a linear program or
minimum-cost flow problem with linear cost function (see the early works [17,14,6,9]
and e.g. [26,3,16] for more recent publications). However, due to special constraints and
objectives, the ETDP is more complex than the classical transportation problem and
these polynomial-time algorithms are not applicable.

The Fixed-Charge Transportation Problem (FCTP) [13,18], is a generalization of the
transportation problem for which fixed costs are incurred whenever a route between a
supplier and a customer is opened. These fixed costs are added to the unit costs incurred
per unit shipped from the given supplier to the given customer. The objective of the
FCTP is to decide which routes are opened and which amounts are shipped on these
routes to minimize the total cost. This objective is related to the objective of the ETDP
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to schedule employees to work on as few different operations as possible within one
shift. See Theorem 1 in Section 4 for details on the relation of the ETDP to the FCTP.

The ETDP is also related to the assignment problem [24], for which tasks must
be assigned to agents to minimize overall costs. In contrast to the ETDP, a one-to-
one assignment needs to be found for the assignment problem. Also, the generalized
assignment problem (GAP) [4,23] is not general enough to capture the nature of the
ETDP. Here, multiple tasks may be assigned to one agent, but tasks may not be split
among multiple agents.

Another loosely related problem is the resource-constrained project scheduling prob-
lem (RCPSP), which considers scheduling subject to resource and preceding constraints
like minimum and maximum time lags. The problem is widely studied in the literature.
For an overview see [11,12]. However, the RCPSP focuses much more on the schedul-
ing aspect, whereas our problem abstracts away timing information of operations and
employees and focuses more on the assignment part.

2 The Employee Task Distribution Problem

An instance of the Employee Task Distribution Problem (ETDP) consists of a set of
employees, a set of operations, a set of time buckets, and a set of qualifications. The
goal is to assign a number of time units to every bucket-employee-operation triple so
that all constraints are respected and the objective function is minimized. Assigning 0
time units to a triple is always admissible.

An overview of all the instance parameters of an ETDP instance is given in Table 1.
Let B = {1, 2, . . . , D} be the set of time buckets. These time buckets are used to model
subsequent non-overlapping blocks of time within which the assignments are made.
Such time buckets can be interpreted as shifts, work days, calendar weeks, etc. The set
of employees E = {1, 2, . . . ,<} is specified by the employees’ supplied time capacities
sc(1, 4) 2 N[ {0}81 2 B, 4 2 E and the employees’ priority levels ep(1, 4) 2 N+. The
set of operations is denoted by O = {1, 2, . . . , =}. For every operation > 2 O and time
bucket 1 2 B, we are given the demanded time capacity dc(1, >) 2 N[ {0}, the priority
level op(1, >) 2 N+, the minimum (positive) assigned capacity mc(1, >) 2 N [ {0}
and mp(1, >) 2 N [ {0}, the maximum number of operations any employee assigned
to > can be assigned to in total within the same time bucket. The qualification matrix
& = (&(>, 4))

>2O,42E with &(>, 4) 2 N [ {0} captures which employees are qualified
for which operations. An entry &(>, 4) = 0 means that employee 4 cannot be assigned
to operation > and the value of an entry &(>, 4) > 0 indicates the level of qualification.
Different levels of qualification can be used to model differences in the quality of the
output resulting from an assignment: If 41 and 42 are to employees that are qualified for
an operation > 2 O, &(>, 41) > &(>, 42) > 0 means that assigning 41 to this operation
leads to an output of superior quality than assigning 42 to this operation.

For every bucket-employee-operation triple (1, >, 4) with 1 2 B, > 2 O and 4 2 E,
a non-negative value �(1, >, 4) 2 N [ {0} needs to be assigned. This value �(1, >, 4)
corresponds to the number of time units employee 4 works on operation > within time
bucket 4. The constraints that need to be satisfied by the assignments �(1, >, 4) for all
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Employees sc(1, 4) supplied capacity Constraint (3)
4 2 E ep(1, 4) employee priority Objective (1b)

Operations dc(1, >) demanded capacity Constraint (3)
> 2 O op(1, >) operation priority Objective (1c)

mc(1, >) min. assigned capacity Constraint (5)
mp(1, >) max. parallel operations Constraint (6)

Qualifications &(>, 4) qualification level Constraint (2)
Objective (1d)

Table 1: Overview of the instance parameters of the ETDP for a time bucket 1 2 B

1 2 B, > 2 O and 4 2 E as well as the objectives that should be minimized are described
in what follows.

2.1 Constraints

A feasible set of assignments �(1, >, 4) 2 N [ {0} for all time buckets 1, operations
> and employees 4 needs to respect the following constraints. Setting �(1, >, 4) = 0 is
always admissible; a positive assignment �(1, >, 4) > 0 may however only be made if
&(>, 4) > 0, i.e., employee 4 is qualified for operation >. For employees and operations,
the supplied resp. demanded capacity levels may not be exceeded for each time bucket.
That is, the sum of all assignments to a given operation > (resp. employee 4) within a
time bucket 1 may not exceed the demanded capacity dc(1, >) (resp. supplied capacity
sc(1, 4)). Moreover, for operations with minimum assigned capacity mc(1, >) > 0, the
sum of all assignments must be equal to 0 or at least equal to mc(1, >). The maximum-
parallel-operations constraint enforces that any employee 4 assigned to an operation >
at time bucket 1 with mp(1, >) > 0 may not be assigned to more than mp(1, >) many
operations in total. Both the minimum-assigned-capacity and the maximum-parallel-
operations constraints alone cause the ETDP to be NP-hard. For a formal statement
and proof of this result, see Section 4.

2.2 Objectives

A multitude of different practical use cases give rise to different optimization objectives
for the ETDP. These use cases can occur independently of each other within a specific
application. Often, a trade-off between several, potentially conflicting, objectives needs
to be found in practice. Finding such a trade-off among is the topic of multiobjective op-
timization and many different methods have been suggested to approach this goal [7,19].
For our specific application, we wanted an approach that allows high flexibility and al-
lows the users to select a combination of objectives, each with a certain priority and
weight. Priorities can be used to set the order of lexicographic optimization and weights
can additionally be used to balance objectives with the same priority level.
Basic objective: Maximize the sum of assignments The basic objective of the ETDP is
to maximize the overall satisfied capacity demands over all time buckets. Equivalently,
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the objective is to minimize the amount of unsatisfied capacity demands, i.e., the cost
is defined as the difference between the theoretical maximum assignment level and the
sum of all assignments.
Employee prioritization If capacity supplies exceed capacity demands, i.e., not all
capacity supplies are fully used, the distribution of used capacity per employee should
be done so that permanent staff are lexicographically more important than others, e.g.
leased or temporary staff. With the usage of ep(1, 4) 2 N, many levels of employee
prioritization are possible.
Operation prioritization If capacity demands cannot be met fully, the distribution of
assigned capacity per operation should be such that bottleneck operations are lexico-
graphically more important than others. Levels of operation prioritization are specified
with op(1, >) 2 N for > 2 O.
Maximize qualification score The quality of the output might depend on the qualifi-
cation level of employees assigned to operations. In this case, the goal is to maximize
the weighted sum of assignments, where the qualification levels give the weights. Note
that this objective is equivalent to the basic objective if the qualification matrix & is a
binary matrix. Qualification levels can also be used to model employees’ preferences for
certain operations. In this case, this objective corresponds to maximizing employees’
satisfaction with the assignments.
Time bucket change objective If multiple time buckets are considered, another criterion
for the output’s quality is the degree of continuity in the tasks assigned to employees.
More precisely, if employee 4 is assigned to operation > in time bucket 1, i.e. �(1, >, 4) >
0, it can be beneficial to assign this employee to the same operation in the consecutive
time bucket 1+1, i.e. to set �(1+1, >, 4) > 0 as well. Maximizing the overall continuity
across all employees is achieved by minimizing the number of times this is not the case
for every employee, i.e. minimizing the number of operations and time buckets for which
�(1, >, 4) > 0 but �(1 + 1, >, 4) = 0.
Concentrated assignments = minimize assignment count objective In practice, so-
lutions in which the assignments are concentrated are often more favorable than those
with assignments spread across the operations and employees. It is better for the em-
ployees and the outcome of their work if they are assigned to fewer operations within the
same shift. For instance, a solution in which �(11, >1, 41) = 2 and �(11, >2, 42) = 2 is
often clearly better than a solution with �(11, >1, 41) = �(11, >1, 42) = �(11, >2, 41) =
�(11, >2, 42) = 1 even if all other objective values are equal.

The sole goal of minimizing the number of assignments would always lead to a null
assignment. Therefore, it only makes sense in combination with one of the other objec-
tives, e.g. minimizing the number of assignments while at the same time maximizing
the sum of assignments. While all other objectives are linear in the assignment values
�(1, >, 4), the “minimize-assignment-count” and the “time-bucket-change”-objective
are not. Using the “minimize-assignment-count” objective combined with any of the
other ones causes the ETDP to be NP-hard, as we show in Section 4.

See the mathematical model introduced in the following section for a formal defi-
nition of these objective functions and an explanation of how they are combined into
a single function using weights. Note that we formulate all objective functions as cost
functions, i.e., we formulate the ETDP as a minimization problem.
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3 Mathematical Model

We use decision variables

�(1, >, 4) 2 N [ {0} 81 2 B 8> 2 O 84 2 E

to indicate the amount of capacity assigned to a bucket, operation, and employee triple.
In the following, we have underlined all constants involved. For their calculation, we
refer the reader to Section 3.3 and the technical appendix[15].

Min. >1 9 =_0 · 0 + _4 · 4 + _> · > + _@ · @ + _A · A + _2 · 2, where (1)

0 =<0G0 �
’

12B,>2O,42E
�(1, >, 4) (1a)
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´
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81 2 B, 8> 2 O with mp(1, >) > 0,
84 2 E with �(1, >, 4) > 0 :
|{8 2 O : �(1, 8, 4) > 0}|  mp(1, >) (6)
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3.1 Objective function

The objective function in equation (1) consists of six components combined in a weighted
sum. These weights _8 are calculated on the basis of the priorities and weights of every
objective component and are calculated as “big M” values. The use of large constants that
are referred to as “big Ms” is very common when solving multi-objective optimization
problems, particularly in practical applications. Note that all solutions that are optimal
with respect to a weighted sum of the objective components are Pareto-optimal [5] with
respect to the three objective components. All objective components are modeled as
cost functions, i.e., we formulate the ETDP as a minimization problem. The objective
component 0 corresponds to the basic objective, 4 to employee prioritization, > to
operation prioritization, @ to maximizing the qualification score, A the time bucket change
objective with indicator function 1>0 (G), which is one if G > 0 and zero otherwise, and
2 is the number of non-zero assignments. Note that all objective functions are linear in
the decision variables except for A and 2. The constants <0G0, <0G4, <0G> and <0G@
are chosen in such a way for every instance that a solution with cost value equal to 0
corresponds to a theoretical optimum. We refer the reader to the online appendix for
detailed calculations [15].

3.2 Constraints

The constraint in equation (2) ensures that an assignment of employee 4 to operation
> at time bucket 1, i.e. �(1, >, 4) > 0, is only possible if employee 4 is qualified for
operation >, i.e.&(>, 4) > 0. The constant 20? is the minimum of the overall maximum
supplied capacity and the overall maximum demanded capacity. Equations (3) and (4)
encode the capacity constraints of employees and operations. Equation (5) encodes the
minimum-assigned-capacity constraint: The sum of all assignments to operation > needs
to be equal to 0 or greater than or equal to mc(1, >) for bucket 1. This constraint is
thus always fulfilled for operations with mc(1, >) = 0. Finally, the maximum-parallel-
operations constraint is modeled by Equation (6) and has to be fulfilled for all operations
> 2 O and buckets 1 2 B with mp(1, >) > 0: Every employee 4 assigned to such an
operation can in total be assigned to no more than mp(1, >) many different operations.

3.3 Weights of the objective components

The weights of objective components _0, _4, _>, _@ , _A and _2 are set in order to respect
the priorities and weights of objective components in the aggregated objective function
>1 9 as defined in equation (1).

For this purpose, we introduce the following notation. The objectives 0, 4, >, @, A and
2 are first grouped into objectives with same priority level ?. Note that we assume that
the objective priorities take all values between 1 and the maximum objective priority
: . Within a priority level ?, the aggregated objective function >1 9? is calculated as
a weighted sum of the normalized objective components >1 9?,1, . . ., >1 9?,:? using
the respective weights F?,1, . . ., F?,:? , where : ? is the number of objective functions
with priority level ?. The overall aggregated objective function >1 9 is then created as a
linear combination of the functions >1 91, . . ., >1 9: where the coefficients in this sum
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Fig. 1: Aggregated objective function with weights and priorities

are chosen as big M constants such that a lexicographic optimization is achieved (>1 91
is lexicographically more important than >1 92, aso.). For a visualization of the structure
of the aggregated objective function, see Figure 1.

The objective function >1 9 is defined as follows:

>1 9 =
:’
8=1

"8 · >1 98 with
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9=8+1
(1 + ub(>1 98))

=
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>1 98 = LCM8
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9=1
F8, 9
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LCM8 =
LCM

�
ub(>1 98, 9 ) : 9 2 [1, :8]

�
GCD

�
F8, 9 : 9 2 [1, :8]

�
The least common multiple LCM and the greatest common divisor GCD are used to
ensure that the objective function is an integer to make it applicable for constraint
programming solvers. The functions ub(>1 98, 9 ) are upper bounds on the respective
objectives >1 98, 9 which can be one of the cost functions 0, 4, >, @, A , and 2. Their values
are given by the constants defined in the previous section:

ub(0) = <0G0 as in equation (1a)

ub(4) = <0G4 as in equation (1b)

ub(>) = <0G> as in equation (1c)

ub(@) = <0G@ as in equation (1d)

ub(A) = |{> 2 O, 4 2 E : &(>, 4) > 0}| · (D � 1).
ub(2) = |{> 2 O, 4 2 E : &(>, 4) > 0}|.
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We can also write the objective function as follows:

>1 9 =
’
5 2F

_ 5 · 5 =
’
5 2F

✓
"? 5 ·

LCM? 5

ub( 5 ) · F 5 · 5
◆
,

where ? 5 is the priority and F 5 is the weight of objective function (name) 5 from the set
of objective functions F = {0, 4, >, @, A, 2}. The weights _ 5 for 5 2 F are the weights
used in the mathematical model.

4 Complexity Results

The Employee Task Distribution Problem with the basic objective (1a), the employee
prioritization (1b), operation prioritization (1c) or qualification score objective (1d)
but without max-parallel-operations-constraints (6) and without min-assigned-capacity-
constraints (5) can be formulated as a classical transportation problem [25,8]. These
special cases of the ETDP can thus also be solved in polynomial time.

However, very simplified versions of the ETDP involving the other objectives and the
specialized max-parallel-operations- and min-assigned-capacity-constraints are NP-
hard. In the following, we formally state these NP-hardness results for the ETDP. Note
that some proofs can be found in the technical appendix, which is available online [15].

Theorem 1. The Employee Assignment optimization problem without max-parallel-
operations- and min-assigned-capacity-constraints and with the objective of minimizing
the number of assignments as defined in equation (1f) and the quality score objective
(equation (1d)) or sum of assignments (equation (1a)) is strongly NP-hard.

Proof. The ETDP without max-parallel-operations- and min-assigned-capacity-constraints
and with the objective of minimizing the number of assignments and the quality score
objective (or sum of assignments) is equivalent to a special case of the Fixed-Charge
Transportation Problem (FCTP). The FCTP is a generalization of the transportation
problem and was introduced by Hirsch and Dantzig [13]. The following description of
the FCTP is given by Kowalski [18]:

The fixed-charge transportation problem consists of < suppliers and = customers.
Each of the < suppliers can ship to any of the = customers at a shipping cost per unit
28, 9 (unit cost for shipping from supplier 8 to customer 9), plus a fixed cost 58, 9 , assumed
for opening this route. The objective is then to determine which routes are to be opened
and the size of the shipment on those routes so that the total cost of meeting demand,
given the supply constraints, is minimized.

The FCTP can be formalized as follows, where the decision variables G8, 9 model
the amount shipped from supplier 8 to customer 9 and the {0, 1}-variables H8, 9 model
whether a positive amount is shipped from supplier 8 to customer 9 or not:

minimize / =
<’
8=1

=’
9=1

(28, 9G8, 9 + 58, 9 H8, 9 )
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subject to
=’
9=1
G8, 9 = 08

<’
8=1

G8, 9 = 1 9

G8, 9 � 0 88, 9
<’
8=1

08 =
=’
9=1

18

H8, 9 = 0 if G8, 9 = 0
H8, 9 = 1 if G8, 9 > 0

Note that setting 58, 9 to some fixed weight corresponding to the weightF2 of the objective
“minimizing the number of assignments” allows us to model the ETDP (without max-
parallel-operations and min-assigned-capacity constraints) as FCTP. The costs 28, 9 need
to be set accordingly to model the qualification levels, setting them to large “big M”
values in case of absent qualifications. Moreover, dummy operations or tasks must
be introduced if the sum of demanded capacities is not equal to the sum of supplied
capacities.

Angulo et al. [1] showed that the Fixed Charge Transportation Problem is strongly
NP-hard by a reduction from the stronglyNP-complete 3-Partition problem. TheNP-
hardness of the problem holds even if the fixed costs 58, 9 are constant across all suppliers
8 and customers 9 . This shows the NP-hardness of this version of the ETDP.

Theorem 2. The Employee Assignment optimization problem with min-assigned-capacity-
constraint and the sole objective of maximizing the sum of assignments is strongly
NP-hard.

Proof. We prove the NP-hardness of the ETDP with minimum-assigned-capacity-
per-operation-Constraint by providing a polynomial time reduction from the NP-hard
3-dimensional Matching problem [10]. See the technical appendix [15] for the complete
proof.

Theorem 3. The Employee Assignment optimization problem with maximum-parallel-
operations-constraint and the sole objective of maximizing the sum of assignments is
strongly NP-hard.

Proof. We prove the NP-hardness of the ETDP with maximum-parallel-
operations-constraint by providing a polynomial time reduction from the strongly NP-
complete 3-Partition problem [10]. See the technical appendix [15] for the complete
proof.

Note however that if the max-parallel-operations-constraint is set to mp(>) = 1
for all operations > 2 O, the ETDP corresponds to a Single-Source Transportation
Problem [21], which is equivalent to a Generalized Assignment Problem [4,23] and is
solvable in polynomial time.
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5 Experimental Evaluation

We implemented the mathematical model presented earlier using the high-level con-
straint modeling language MiniZinc [22]. In order to evaluate the performance of
our model, we conducted experiments with the following state-of-the-art MIP and CP
solvers: Gurobi, CPLEX, Cbc, Chuffed and OR-Tools. For the MIP solvers, MiniZinc
automatically converts the given constraint model into an MIP model [2].

The benchmark set used for these experiments consists of a total of 216 instances and
is publicly available online [15]. It is based on twelve relatively small real-life instances
that were provided to us by our industrial partner. These instances have between 9 and
23 employees and between 5 and 16 operations; at most 448 capacity units need to be
distributed among the employees and operations. For every one of these instances, six
different settings for the objective function were evaluated in order to model different
practical use cases:

– UCOpPrio: the sole objective is operation prioritization
– UCEmpPrio: the sole objective is employee prioritization
– UCAss: the objective is to maximize the sum of assignments with first priority and

to minimize the assignment count with second priority
– UCQuali: the sole objective is to maximize the qualification score
– UC3Buckets: three time buckets are considered, a combined objective with the first

priority being the maximization of the qualification score and the second priority
being the minimization of changes between time buckets with weight 1 and the
minimization of the assignment count with weight 2

– UC4Buckets: four time buckets are considered with the same combined objective
as for the UC3Buckets use case
In order to test the scalability of our model, we created larger instances from real-

life instances by copying the employees and operations and randomly perturbing their
properties such as capacities and constraints. Qualifications were also perturbed. This
resulted in a set of 72 medium-sized instances for which the number of employees and
operations from the real-life instances was doubled and a set of 72 large instances for
which they were multiplied by five. The large instances thus have up to 115 employees
and up to 80 operations.

In practice, high-quality solutions to the ETDP need to be found very quickly.
Indeed, even though the employee-operation-assignments are planned in advance over
a large time horizon of several weeks or months, the actual capacities of employees and
operations are subject to short-time changes due to sickness, material shortage, order

feasible solutions found (in %) opt. solved proven opt. opt. gap (in %)
solver total small medium large (in %) (in %) average std

Gurobi 100.0 100.0 100.0 100.0 84.7 84.7 2.1 12.0
CPLEX 100.0 100.0 100.0 100.0 83.3 79.6 2.8 14.2

Cbc 97.2 100.0 100.0 91.7 65.7 64.4 11.1 29.2
Chuffed 86.6 98.6 88.9 72.2 10.6 6.9 68.5 39.2

OR-Tools 100.0 100.0 100.0 100.0 3.2 1.9 79.2 31.2

Table 2: Overview of the experimental results achieved with a time limit of 60 seconds.
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Fig. 2: Performance plot over all 216 instances, comparing solvers Gurobi, CPLEX, Cbc,
Chuffed, and OR-Tools.

cancellations etc. Therefore, (updated) instances of the ETDP need to be solved often
and quickly. We thus conducted experiments with a runtime limit of 60 seconds, which
is a realistic time-bound for practical purposes. We also experimented with a 3-minute
time limit but do not report these results here in detail as these only revealed minor
qualitative differences in the solvers’ performance. All experiments were run on single
cores, using a computing cluster with ten identical nodes, each having 24 cores, an
Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

5.1 Experimental Results

An overview of our experimental results with a runtime limit of 60 seconds can be
found in Table 2. For all solvers, we display the percentages of instances for which
(i) a feasible solution (in total, for small, medium and large instances), (ii) an optimal
solution, and (iii) an optimal solution, including an optimality proof, could be found
within the time limit. Note that the difference between (ii) and (iii) is that (iii) reports
the percentage of instances that the corresponding approach could solve to proven
optimality, whereas (ii) also includes instances where the approach was able to find the
optimal solution, but not necessarily with an optimality proof (but we know that the
solution is optimal due to a lower bound obtained from one of the other approaches).
Moreover, the average optimality gaps (in percentage) with the corresponding standard
deviations are reported. The optimality gap for a given instance 8 is defined as follows:
6(8) = (2(8) � 1(8))/2(8) · 100, where 2(8) is the cost of the found solution and 1(8) is
the best lower bound on the solution cost found by any of the evaluated solvers. In this
table, the best results are highlighted in bold font.

A first observation is that some solvers were not capable of finding feasible solutions
for all 216 benchmark instances, even though the trivial null assignment—assigning 0
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Fig. 3: Performance plot over all 216 instances grouped by the use cases. Use cases with
a linear objective function can be solved more efficiently than use cases with non-linear
objectives.

to every bucket-operation-employee-triple—is always a feasible solution. Indeed, only
Gurobi, CPLEX, and OR-Tools found solutions for all instances, but Cbc failed to find
a feasible solution for some large instances. Chuffed was overall less successful at
finding solutions. Almost all solutions found by Gurobi were of very high quality, as
optimality proofs could be delivered for more than 84 % of all instances. Moreover, for
those instances that were not provably solved to optimality within the time limit of 60
seconds, the solutions found were also close to the optimum, as the average optimality
gap is 2.1 %.

In terms of optimality, the second-best results could be achieved by CPLEX (roughly
83 % of optimally solved instances), followed by Cbc (slightly less than 66 % of optimally
solved instances). Both Gurobi and CPLEX were capable of finding optimal solutions
for almost all real-life instances and all use cases. Chuffed and OR-Tools only managed
to solve very few instances to optimality and are clearly not competitive with the MIP
solvers Gurobi, CPLEX and Cbc for this model. For all solvers except Gurobi and
CPLEX, the optimality gaps get large, with average values between 11 and 80 %. Note
that for those instances where some solver could find no feasible solution, we used the
solution cost of the null assignment to compute the optimality gap.

These results are also presented graphically as a performance plot in Figure 2. The
plot is divided into two parts: The left part shows the number of instances solved to
proven optimality within a certain number of seconds. For instances that could not
be solved to proven optimality within 60 seconds, the right part shows the remaining
optimality gap for the number of instances.
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Figure 2 also indicates that almost all optimality proofs are delivered by Gurobi,
CPLEX and Cbc within the first 20 seconds. More precisely, Gurobi, CPLEX and
Cbc were able to prove optimality of 93 %, 96 %, and 95 % of the optimality solved
instances, respectively. Moreover, the median proof times of the instances solved to
proven optimality are 2.95, 2.83, and 2.86 seconds, for Gurobi, CPLEX and Cbc,
respectively. The slowest median proof times are obtained from Chuffed with 15.14
seconds, followed by OR-Tools with 8.24 seconds.

We also conducted experiments with a runtime limit of five minutes. Increasing the
time limit allowed the weaker solvers, Chuffed and OR-Tools, to solve more instances
and all solvers to deliver some more optimality proofs.

Moreover, we evaluated the results for the six different use cases separately. The
results are shown in Figure 3 where for each use case a performance plot is drawn.
All solvers could achieve similar results for the use cases UCOpPrio, UCEmpPrio, and
UCQuali, with the highest number of optimally solved instances for these three use
cases. The other three use cases UCAss, UC3Buckets, and UC4Buckets were harder to
solve. This can be explained as follows: UCOpPrio, UCEmpPrio and UCQuali consist
of a single, linear objective function that can be handled efficiently by the evaluated
solvers. The other use cases were harder to solve. For the other three use cases UCAss,
UC3Buckets, and UC5Buckets, Gurobi delivered the overall best results but could not
provide optimality proofs within the time limit for 17 %, 28 %, and 33 % of the
instances, respectively. Use case UCAss has a non-linear component (counting the
number of positive assignments) and use cases UC3Buckets and UC4Buckets consist
of a combination of several objectives with two non-linear components (counting the
number of positive assignments and the number of employee-operation changes between
time buckets), which slows down the solution process. These experimental results also
reflect the complexity results from Section 4. Indeed, the objective functions for use
cases UCOpPrio, UCEmpPrio and UCQuali can also be expressed as cost functions in
a classical transportation problem, which can be solved in polynomial time. However,
computational complexity remains also for these use cases due to the presence of
max-parallel-operations- and min-assigned-capacity-constraints. Moreover, the use case
UCAss corresponds to an NP-hard variant of the ETDP.

6 Conclusion

In this paper, we introduced and formally defined the Employee Task Distribution
Problem, a planning problem that arises in practice and has similarities with classical
transportation problems. In order to handle a variety of different objective functions
and specialized constraints that distinguish the ETDP from transportation problems, we
propose a new solver-independent mathematical model. Our experiments conducted with
five state-of-the-art solvers on a benchmark set of 216 instances showed that overall best
results could be achieved using the MIP solver Gurobi which could provide optimality
proofs within less than 60 seconds for more than 84 % of all instances. The MIP solvers
CPLEX and Cbc could also achieve high-quality results. All real-life instances provided
by our industry partner could be solved optimally within this very short time bound by
Gurobi and CPLEX. Overall, the MIP solvers found better solutions for the large majority
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of instances in our experiments compared to the evaluated CP solvers, indicating that
exploiting the linear structure that lies at the core of the problem is crucial for solving
the ETDP efficiently.

As a next step, we plan to develop metaheuristic solution methods for the ETDP
independent of external solvers. The challenge is to design algorithms that are capable of
finding near-optimal solutions within a few seconds. This would significantly increase
the practical applicability of our approach. Developing such solutions would allow our
industrial partner to include them in a cloud-based web service and offer them to an
even more diverse set of customers.
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Abstract. Research in timetabling often focuses on clear-cut academic prob-
lems. Real-world healthcare optimization problems, however, encompass addi-
tional challenges due to various decision and optimization problems being inter-
twined. Moreover, general timetabling methodologies are not necessarily suitable
for addressing such integrated problems. In the interest of stimulating research on
the specifics of integrated scheduling problems in healthcare, this paper introduces
the Integrated Healthcare Timetabling Competition 2024 We begin by describing
the problem formulation, which integrates three critical problems in healthcare:
surgical case planning, patient admission scheduling and nurse-to-room assign-
ment. Next, we discuss the data sets and file formats, along with the solution
checker (validator) that we provide for the participants. Finally, we state the rules
of the competition and explain how participants will be ranked. All up-to-date
information concerning the competition is available at the competition’s website
https://ihtc2024.github.io.

Keywords: Healthcare, Integrated optimization problem, Competition.

1 Introduction

Integrated healthcare scheduling deals with the coordination of resources related to
various services within a single healthcare system. It aims to streamline and optimize
the flow of patients across different departments and facilities of the hospital. The
benefits of integrated healthcare optimization are manifold: enhanced patient experience,
improved operational efficiency, and optimized resource utilization across the entire
hospital system.

Contributions to integrated healthcare applications have been surveyed by Rachuba
et al. [6]. They identify three levels of increasing integration, ranging from solving a
single problem while incorporating the constraints coming from the other problems
(level 1), to sequentially solving two or more problems using the output of one problem
as input for the next one (level 2), and finally to simultaneously solving two or more
problems at once in a single stage (level 3).

https://ihtc2024.github.io
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A recent proposal for level 3 integration by Brandt et al. [1] addresses the simulta-
neous resolution of two operational problems that are critical in hospitals: the Patient-
to-Room Assignment (PRA) and the Nurse-to-Patient Assignment (NPA) problems.

The Integrated Healthcare Timetabling Competition 2024 (IHTC) revises the prob-
lem introduced by Brandt et al. and generalizes it by incorporating a third important
optimization problem in hospitals, namely Surgical Case Planning (SCP)[7]. The result-
ing integrated problem, which we call the Integrated Healthcare Timetabling Problem
(IHTP), brings together three NP-hard problems and requires the following decisions:
(8) the admission date for each patient (or admission postponement to the next scheduling
period), (88) the room for each admitted patient for the duration of their stay, (888) the
nurse for each room during each shift of the scheduling period, and (8E) the operating
theater (OT) for each admitted patient.

The IHTP is subject to many hard and soft constraints. Some of these constraints
relate to a specific subproblem, while others arise from their interactions. The IHTP is a
special case of real-world timetabling at hospitals, which are often subject to additional
constraints. Furthermore, we consider the static, deterministic variant of the IHTC, in
which all information for a fixed scheduling period is known at the time of solving.

The remainder of this paper is organized as follows. Section 2 provides the prob-
lem definition. Section 3 introduces the datasets and the validator made available to
participants for evaluating their solutions. Finally, Section 4 describes the rules of the
competition. Appendix A is also included as supplementary material, which describes
the file formats. All up-to-date information concerning the competition is available at
the competition’s website https://ihtc2024.github.io.

2 Problem definition

After first introducing the basic concepts of the IHTP, we will define the hard and soft
constraints of the problem and explain how they must be evaluated throughout the entire
scheduling horizon.

2.1 Basic concepts

We begin by introducing the time horizon and physical resources involved in the IHTP:

Scheduling period: The scheduling period is defined as a number ⇡ of consecutive
days. ⇡ is always a multiple of seven, and can vary from 14 (two weeks) to 28 (four
weeks).

Shifts: A shift denotes a nurse’s working period during a day. We assume three non-
overlapping shifts per day: early, late, and night. The entire scheduling period thus
consists of 3⇡ shifts. Each shift is denoted by an integer ranging from 0 to 3⇡ � 1.
The early, late and night shifts on the first day are numbered 0, 1, and 2, respectively.
For the second day, the shifts are numbered 3, 4, and 5. This pattern continues until
the end of the scheduling period.

Operating theaters: All OTs are identical in that they are suitable for accommodating
any type of surgery. Each OT has a daily maximum capacity, expressed in minutes.

https://ihtc2024.github.io
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Some OTs might be unavailable on specific days, indicated by a maximum capacity
of 0 minutes on those days.

Rooms: Rooms host the patients during their recovery. These rooms are characterized
by their capacity, expressed in terms of the number of beds. Room equipment is not
explicitly taken into account. However, as will be outlined in what follows, some
rooms might be declared unsuitable for some patients.

Next, we describe the human resources that are involved in the IHTP:

Nurses: Each nurse has a skill level. Levels are strictly ordered (hierarchical) and
represented by an integer that ranges from 0 (lowest) to ! � 1 (highest), where !
is the number of skill levels. Furthermore, each nurse has a predetermined roster,
which is defined as a set of shifts that the nurse has been assigned to, along with the
maximum workload the nurse can accommodate in each shift. This roster is fixed
and cannot be changed.

Surgeons: Each surgeon has a maximum operating time on each day, which is 0 when
the surgeon is unavailable on that day. If a surgeon is available, we assume their
surgical team is also available. In other words, the surgeon and their team form an
atomic indivisible resource (called surgeon for simplicity).

Note that the maximum nurse workload is shift-dependent as nurses can carry out
auxiliary activities during some specific working shifts, thereby reducing their avail-
ability. Also note that we assume an open scheduling policy [3], which means that all
surgeons can operate in all OTs.

The patient is the central entity of the problem. The following information is provided
for each patient:

– mandatory/optional: mandatory patients must be admitted during the scheduling
period, while the admission of optional patients can be postponed until a future
scheduling period.

– release date: earliest possible admission date for the patient.
– due date: latest possible admission date, provided only for mandatory patients.
– age group: the age group of the patient (e.g., infant, youth, adult, elder). The list of

age groups is fully ordered.
– gender: the gender of the patient.
– length of stay: duration of the hospitalization in days.
– incompatible rooms: set of rooms that must not be allocated to the patient because,

for example, they do not have the specific equipment or the necessary isolation.
– surgery duration: the expected duration of the patient’s surgery, which is assumed

to always take place on the day of admission.
– surgeon: the surgeon who carries out the patient’s surgery.
– workload: the workload profile generated by the patient, which is described by a

vector, starts at the early shift of the admission day and ends at the night shift of the
discharge day. The length of the vector equals 3 times the patient’s length of stay.

– minimum skill level: the minimum nurse skill level required by the patient for each
shift they are staying in the hospital; described by a vector similar to the patient
workload vector.
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Note that both the workload and the minimum skill level required for a patient can
vary based on the shift and how long the patient has been in the hospital, as these factors
are related to the patient’s treatments and stage of recovery. Both values are usually
lower during night shifts and higher during the initial days of the stay.

2.2 Solution

The solution of an IHTP instance consists of the following decisions:

i. the admission date for patients, or, in the case of optional patients, potentially their
postponement to the next scheduling period;

ii. the allocation of a room for each admitted patient;
iii. the assignment of a single nurse to each occupied room, for each shift within the

scheduling period;
iv. the assignment of patient surgeries to OTs, for each day of the scheduling period.

We assume that patients are always admitted and discharged after the night shift and
before the early shift. Note that a patient stays in only one room during the entire length
of their stay, meaning a patient cannot be transferred from one room to another.

We also assume that all patients undergo surgery, and that this takes place on the
day of admission. In addition, as each patient’s surgeon is predetermined, the day of
admission automatically determines the total surgery time of each surgeon on each day.
By contrast, the OT must be selected. This assignment does not include the precise
operating time, only the date. The IHTP does not consider the order of surgeries in an
OT.

Finally, note that it is necessary to assign a nurse to a room on a given shift only if
that room contains patients on the day to which the shift belongs. Nevertheless, assigning
nurses to empty rooms would be feasible and does not incur additional costs.

2.3 Constraints

We divide the constraints into four sets: (i) those related to the PAS problem, (ii) those
related to the NRA problem, (iii) those related related to the SCP problem, and finally
(iv) those related to the integration of the three problems. In addition, constraints are
categorized as either hard (starting with H) or soft (starting with S). The former must
always be satisfied, while the latter contribute to the objective function. Violations of
soft constraint S8 are multiplied by weight,8 . Note that the soft constraint weights are
instance-specific and thus given in each input file.

Constraints on Patient Admission Scheduling

H1 No gender mix: Patients of different genders may not share a room on any day.
H2 Compatible rooms: Patients can only be assigned to one of their compatible rooms.
S1 Age groups: For each day of the scheduling period and for each room, the maximum

difference between age groups of patients sharing the room should be minimized.
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Constraints on Nurse-to-Room Assignment

While the IHTP does not explicitly require the assignment of nurses to patients, the
combination of patient-to-room assignments and nurse-to-room assignments determines
which nurses are responsible for which patients. The following constraints (S2, S3, and
S4) depend on the resulting nurse-patient assignment.

S2 Minimum skill level: The minimum skill level a nurse must have to provide the
required care for a patient during each shift of their stay should be met. If the skill
level of the nurse assigned to a patient’s room in a shift does not reach the minimum
level required by that patient, a penalty is incurred equal to the difference between
the two skill levels. Note that a nurse with a skill level greater than the minimum
required can be assigned to the room at no additional cost.

S3 Continuity of care: To ensure continuity of care, the total number of distinct nurses
providing care to a patient during their entire stay should be minimized. The given
rosters assume maximum one shift per day for each nurse, hence the number of
different nurses who take care of a patient is at least 3.

S4 Maximum workload: For each shift, the total workload induced by patients staying
in rooms assigned to a nurse should not exceed the maximum workload of that nurse
in that shift.

Constraints on Surgical Case Planning

H3 Surgeon overtime: The maximum daily surgery time of a surgeon must not be
exceeded.

H4 OT overtime: The duration of all surgeries allocated to an OT on a day must not
exceed its maximum capacity.

S5 Open OTs: The number of OTs opened on each day should be minimized. Note that
if an OT has no patients assigned for a particular day, it should not open on that day.

S6 Surgeon transfer: The number of different OTs a surgeon is assigned to per working
day should be minimized.

Global constraints

H5 Mandatory versus optional patients: All mandatory patients must be admitted within
the scheduling period, whereas optional patients may be postponed to future schedul-
ing periods.

H6 Admission day: A patient can be admitted on any day from their release date to their
due date. Given that optional patients do not have a due date, they can be admitted
on any day after their release date.

S7 Admission delay: The number of days between a patient’s release date and their
actual date of admission should be minimized.

S8 Unscheduled patients: The number of optional patients who are not admitted in the
current scheduling period should be minimized.
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2.4 Boundary data

We assume that some patients are already present in the hospital on the first day of the
scheduling period. We use the term occupants to refer to these special patients. While
these occupants contribute to the occupancy of the rooms and to all related constraints,
their admission date and room assignment are fixed. Occupants do not contribute to the
OTs’ occupancy because their surgery occurred during the preceding scheduling period.

For patients admitted during the current scheduling period and who stay after the
end of it, no penalties are incurred after the end of the horizon.

3 Datasets and validator

Problem instances are supplied as JSON files following the structure outlined in Ap-
pendix A. Each instance is contained within a single file. We provide a public dataset
composed of 30 instances, named i01, . . . i30, with a scheduling period ranging from
two to four weeks and a number of patients ranging from approximately 50 to 500. In
addition, we provide five instances, test01, . . . , test05, for testing and debugging
purposes. We also provide a solution for each test instance. We will employ a different
hidden dataset to evaluate the participants’ submissions. This dataset will be shared
with the participants at the end of the competition. Both the public and hidden datasets
are generated using the same instance generator, which utilizes realistic patterns and
distributions.

Generated solutions must be saved as JSON files adhering to the format described in
Appendix A. The validator, which certifies the feasibility and quality of a given solution,
is provided as a C++ source code and should be compiled using, for example, the GNU
compiler g++. The validator receives the instance and solution files as command line
parameters, as demonstrated in the following example.

> ./IHTP_Validator.exe input_file.json sol_file.json

The command line output of the validator appears as follows:

VIOLATIONS:
RoomGenderMix.....................0
PatientRoomCompatibility..........0
SurgeonOvertime...................0
OperatingTheaterOvertime..........0
MandatoryUnscheduledPatients......0
AdmissionDay......................0
RoomCapacity......................0
NursePresence.....................0
UncoveredRoom.....................0
Total violations = 0

COSTS (weight X cost):
RoomAgeMix.............................5 ( 5 X 1)
RoomSkillLevel........................21 ( 1 X 21)
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ContinuityOfCare......................43 ( 1 X 43)
ExcessiveNurseWorkload.................0 ( 1 X 0)
OpenOperatingRoom....................100 ( 50 X 2)
SurgeonTransfer........................0 ( 5 X 0)
PatientDelay..........................50 ( 10 X 5)
ElectiveUnscheduledPatients............0 (300 X 0)
Total cost = 219

If verbose is added as a third parameter, the details of each single cost element are
also printed:

Room r0 is age-mixed 1/2 in day 1
Nurse n5 is underqualified for occupant a1 in room r0 in shift 3 (day1@early)
Nurse n6 is underqualified for patient p5 in room r0 in shift 4 (day1@late)
...
6 distinct nurses for occupant a0
4 distinct nurses for occupant a1
...
Operating theater t0 is open on day 1
Operating theater t0 is open on day 4
Patient p0 has been delayed for 1 days
Patient p1 has been delayed for 2 days
...

4 Competition rules

This competition seeks to encourage research into automated timetabling and schedul-
ing methods for solving an integrated healthcare problem, with prizes offered for the
most successful methods. As with any set of rules for any competition it is possible
to work within the letter of rules but outside their spirit. We, as organizers, ask all
participants to respect both the letter and spirit of these rules. Failing to do so will result
in disqualification.

Rule 1: We reserve the right to update the rules at any time if they believe it is necessary
for the sake of ensuring the correct operation of the competition. Any change of
rules will be notified in the repository.

Rule 2: The competition has deadlines concerning when all submissions must be up-
loaded. These deadlines are strict and no extensions will be given under any cir-
cumstances.

Rule 3: Participants may use any programming language. The use of third-party soft-
ware is allowed under the following restrictions:

– either it is open source (https://opensource.org/osd) or it provides a free,
unlimited academic license;

– its behavior is (reasonably) documented;
– it runs under a commonly-used operating system (Unix/Linux, Windows, or

MAC OS).

https://opensource.org/osd
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Rule 4: The solution method should take as input a file in the format described, and
produce as output a solution file in the correct format. The algorithm must stop after
10 minutes wall time. Parallel computing is allowed, using up to 4 threads.

Rule 5: The solution method may be either deterministic or stochastic. In both cases,
participants must be prepared to show that the results are repeatable within the given
computational time. In particular, participants using a stochastic algorithm should
do their utmost best to code their program in such a way that the run producing each
submitted solution can be replicated by reusing the same random seed.

Rule 6: Participants must submit (i) solutions for all instances from the public dataset
and (ii) a clear and concise description of their algorithm before the first competition
deadline. A set of 5 finalists will be determined by ranking the participants on each
public instance.
If the first 5 finalists all use licensed software, the number of finalists will be
increased to 6 by adding the best-ranked solver using only open-source software.
An infeasible or missing solution will equate to the last position in the ranking for
that particular instance. The mean average of the ranks across all instances will
produce the participant ordering, of which the first 5 are then selected as finalists.
Section 4.2 provides additional details on how the ordering will be established.

Rule 7: We will rerun the finalists’ solution methods on the hidden dataset using the
same time limit specified in Rule 4. The official PC will be a AMD Ryzen Thread-
ripper PRO 3975WX, 3.50 GHz, running Ubuntu Linux 22.4. A different operating
environment might be used in exceptional cases if necessary. It is the responsibility
of competition participants to ensure that all files and information needed to run
their code is provided to us.

Rule 8: The final ranking of the finalists will be based on the ranks obtained for each
instance for a set of trials on hidden instances. Section 4.2 provides an explanation
of the procedures to be used.

4.1 Dates

The competition will be announced at different conferences during the summer of 2024,
including PATAT 2024 and ORAHS 2024. The competition will then officially begin on
September 1, 2024. On this date, we will release the public dataset, the specifications,
and the validator. The deadline for submission of participants’ best solutions and a
description of their solution method is March 1, 2025. Notifications of the finalists
will be sent out on April 1, 2025. The winners will be announced at the EURO 2025
conference in Leeds, UK (June 22-25, 2025).

4.2 Adjudication procedure

We follow the same adjudication procedure used in the First and Second International
Nurse Rostering Competitions (INRC-I, INRC-II) [4,2], which was originally imported
from the Second International Timetabling Competition (ITC-2007) [5]. The procedure
is repeated here for the sake of completeness.

Let < be the total number of problem instances and : the number of participants
who produce a solution for all < instances. Let -8 9 be the result supplied (and verified)
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by participant 8 for instance 9 . Each -8 9 is the value of the objective function B, for
participant 8 on instance 9 . In case participant 8 is unable to provide a feasible solution
for instance 9 , -8 9 is assigned a conventional value " larger than the result supplied by
any other participant for that instance.

The matrix - of results is transformed into a matrix of ranks ' by assigning to
each '8 9 a value from 1 to : . That is, for instance 9 the supplied -1 9 , -2 9 , . . . ,-: 9 are
compared with each other and rank 1 is assigned to the smallest value observed, rank
2 to the second smallest, and so on to rank : , which is assigned to the largest value for
instance 9 . Ranks are assigned for all the instances. We use average ranks in case of
ties. If a solution method produces an infeasible solution, it will be assigned the highest
rank for the corresponding instance. The rule of average ranks for tie-breaking is not
applied in case of infeasibility: solution methods that generate infeasible solutions or
fail to generate solutions at all are assigned rank : for the corresponding instance, in
which k is the total number of participating solution methods.

Consider the example with < = 6 instances and : = 7 participants in Table 1. Table
2 shows the ranks.

Table 1: An example of submitted solution scores.
Instance 1 2 3 4 5 6
Solution method 1 34 35 42 32 10 12
Solution method 2 32 24 44 33 13 15
Solution method 3 33 36 30 12 10 17
Solution method 4 36 32 46 32 12 13
Solution method 5 37 30 43 29 9 4
Solution method 6 68 29 41 55 10 5
Solution method 7 36 30 43 58 10 4

Table 2: Corresponding solution ranks for the example.
Instance 1 2 3 4 5 6
Solution method 1 3 6 3 3.5 3.5 4
Solution method 2 1 1 6 5 7 6
Solution method 3 2 7 1 1 3.5 7
Solution method 4 4.5 5 7 3.5 6 5
Solution method 5 6 3.5 4.5 2 1 1.5
Solution method 6 7 2 2 6 3.5 3
Solution method 7 4.5 3.5 4.5 7 3.5 1.5

We define for each solution method the mean of the ranks. The finalists of the
competition will be the 5 solution methods with the lowest mean ranks. In case of a
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tie for the last position, all tying methods will be included in the final (in this case the
number of finalists will be more than 5). Table 3 shows the mean ranks for the example.

Table 3: Mean ranks.
Solution method 1 3.83
Solution method 2 4.33
Solution method 3 3.58
Solution method 4 5.17
Solution method 5 3.08
Solution method 6 3.92
Solution method 7 4.08

In this case, the finalists would be solution methods 1, 3, 5, 6 and 7.
During the final phase of the competition, the evaluation process is repeated for the

finalists with the following new elements:

1. The hidden dataset will be used.
2. We will run the solution methods of the finalists. We expect the finalists to offer

support in the process of compiling and running their solution method.
3. For each problem instance, we will run 10 independent trials with random seeds.

For each trial, we will compute the ranks and average them over all trials on all
instances.

The winner is the participant with the lowest mean rank. In case of a tie, an additional
trial will be run for all instances until a single winner is found.

4.3 Prizes

The top three teams will receive a cash prize (first prize e 1100, second e 700, third
e 400), and be offered one non-transferable free registration to EURO 2025, which will
host a special track dedicated to the competition.

The best open-source finalist will receive a special prize of e 200, which can be
awarded in addition to the regular prize.
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Appendix A – File formats

Input and solution files are written in JSON. The input file contains a header part in
addition to separate sections for nurses, rooms, operating theaters, surgeons, patients,
and occupants. What follows is an example of the header part, containing the general
data and the weights of the cost components.

{
"days": 28,
"skill_levels": 3,
"shift_types": [
"early",
"late",
"night"

],
"age_groups": [
"infant",
"adult",
"elderly"

],
"weights": {
"room_mixed_age": 5,
"room_nurse_skill": 10,
"continuity_of_care": 5,
"nurse_eccessive_workload": 10,
"open_operating_theater": 20,
"surgeon_transfer": 1,
"patient_delay": 5,
"unscheduled_optional": 350

}
...
}

What follows is a fragment of an example for the section about nurses. For each
nurse, we have a unique identifier (id), the skill level and a list of working shifts with
their respective maximum workloads.

"nurses": [
{
"id": "n00",
"skill_level": 0,
"working_shifts": [
{
"day": 0,
"shift": "early",
"max_load": 10
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},
{
"day": 1,
"shift": "night",
"max_load": 5

},
...

]},
...
]

The structure of the sections concerning rooms, OTs, and surgeons is straightforward
and shown in the following fragment.

"surgeons": [
{
"id": "s0",
"max_surgery_time": [0, 360, 0, 600, 480, 0, 0, 600, ...]

},
...

],
"operating_theaters": [
{
"id": "t0",
"availability": [0, 600, 720, 600, 600, 720, 720, ...]

},
...

],
"rooms": [
{
"id": "r0",
"capacity": 2

},
{
"id": "r1",
"capacity": 3

},
....
]

Finally, we introduce the structure of the patient data, divided into occupants (present
at the beginning of the scheduling period) and regular patients.

"occupants": [
{
"id": "a0",
"gender": "B",
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"age_group": "elderly",
"length_of_stay": 2,
"workload_produced": [2, 1, 1, 2, 3, 2],
"skill_level_required": [1, 2, 0, 0, 0, 0],
"room_id": "r21"

},
...
]

"patients": [
{
"id": "p28",
"mandatory": true,
"gender": "A",
"age_group": "elderly",
"length_of_stay": 3,
"surgery_release_day": 3,
"surgery_due_day": 17,
"surgery_duration": 90,
"surgeon_id": "s0",
"incompatible_room_ids": ["r2"],
"workload_produced": [1, 1, 1, 2, 1, 1, 1, 2, 1],
"skill_level_required": [1, 2, 0, 2, 0, 0, 2, 1, 1]

}
...
}

The solution file format is divided into two sections: one concerning patients and
one concerning nurses. The following fragment illustrates both sections.

{
"patients": [
{
"id": "p00",
"admission_day": 4,
"room": "r3",
"operating_theater": "t0"

},
...
],

"nurses": [
{
"id": "n00",
"assignments": [
{
"day": 0,
"shift": "early",
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"rooms": ["r1", "r4"]
},
{
"day": 1,
"shift": "night",
"rooms": ["r4", "r5"]

},
...
]

},
...
]

}
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Abstract. Educational timetabling subsumes core problems (student sectioning,
course scheduling, etc.) which are challenging from a modeling and computational
perspective. In this paper, we expand on the University Timetabling Problem
framework (UTP) designed to address a wide range of university timetabling
problems. The framework combines a rich data schema with a rule language and
comes with a tool chain to compile instances into constraint satisfaction problems.
We present the UTPmodeling language and a feature model to capture the problem
classes that are expressible. The feature model provides a simple problem classifier
which we use in our literature review. We also present a timetabling instance
generator and report on experiments carried out with Constraint Programming,
Answer-Set Programming and Mixed Integer Linear Programming solvers.

Keywords: Timetabling, Domain-Specific Modeling Language, Feature Model,
Exact Methods, Timetable Dataset Generation

1 Introduction

Various problem formulations, data formats and algorithms have been proposed to tackle
specific aspects of university timetabling ranging from curriculum balancing [16,18,50],
student sectioning [42,52], examination timetabling [14,10,40], curriculum-based or
post-enrollment-based course timetabling [40,12,37,13,26,17], tutor allocation [15], to
minimal timetabling perturbation [38,36]. Modeling languages have also been devel-
oped, notably the XHSTT language [48], the ITC language used in the 2019 international
timetabling competition [41,29] and the UTP language introduced in [9].
UTP is a modeling language for educational timetabling problems which is built on

a structured domain model coupled with a rules language. The model supports sessions
requiring a single resource and those needing multiple resources capturing essential
limitations related to the timing of sessions and distribution of resources. It operates
under the presumption that resources can overlap (i.e. rooms, teachers, and students can
be involved in simultaneous sessions), though this approach can be adjusted through
specific scheduling rules that prevent such overlaps. Given a UTP instance, the objective
is to assign time slots and allocate resources to class sessions so that core constraints
and rules are satisfied.

We first introduce the UTP schema which has been extended to broaden the range of
problems that can be modeled. We then present a feature model to classify educational

�Supported by a research grant from Université d’Angers.
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timetabling problems and compare UTPwith other modeling languages. Lastly, we report
on experiments carried out with 3 UTP solvers - CP, ASP, MIP - on instances created with
a custom generator.

2 The UTP Schema

The UTP schema combines a schema to model timetabling entities and solutions, and
a rule language. The entity schema models the entities of a UTP instance - scheduling
horizon, resources, and course elements including course sessions -, their properties
and relationships. The rule language is user-oriented and serves to concisely express
constraints over any set of entities on the different facets of a problem (e.g., session
scheduling, capacity planning, resource allocation). Rules are formulated using a catalog
of timetabling constraint predicates and a query language to select, filter and bind entities
to sessions.

A rule-based UTP instance is converted to a constraint-based instance that is readily
processable by solvers. The conversion translates the entity schema as decision variables
and core constraints, and then flattens rules as additional constraints. A UTP instance
is thus cast as a hard constraint satisfaction problems. Solving an instance involves
scheduling sessions and assigning them resources so that the core constraints and the
rule constraints are satisfied. The solution schema allows to represent any timetabling
solution computed for an instance, be it incomplete or inconsistent.

This section introduces the components of the schema. The abstract syntax of the
entity schema is given in Table 1, its constraint-based modeling in Table 6 and Table 7
(Appendix), and the syntax of the rule language and constraint predicates in Table 8,
Table 9 and Table 10 (Appendix).

2.1 Entity Schema

The entity schema of a UTP instance combines a hierarchy of course elements (i.e.,
courses, course parts, part classes and class sessions) a scheduling horizon over which
sessions are to be scheduled, and 4 types of resources to which sessions must be allocated
to (i.e., rooms, teachers, students and student groups). The schema encodes the nesting of
course elements and various properties and constraints concerning session scheduling,
resource availability, resource eligibility, teaching service, room capacity, and student
sectioning.

The scheduling horizon is a range of integers denoting time points. The time points
are the start and end times allowed for sessions and any duration (i.e., session length,
travel time and break time) is measured as a number of time points. The horizon is
defined using 3 instance fields: the number of weeks F dividing the horizon, the number
of weekdays 3 making a week and the number of daily slots < making a 24-hour day.
The time points correspond to all possible triplets combining a week, a weekday, and a
daily slot. Note that daily slots may have any granularity (e.g., 1 minute, 2 hours) and the
scheduling horizon may be sparse (e.g., if weeks 8 and 8 + 1 are not consecutive calendar
weeks for some 1  8 < F or if weekdays are dropped, i.e., 3 < 7).
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Course elements follow a hierarchical structure. Each course (e.g., Algorithms)
consists of one or more parts (e.g., Lecture and Lab), each part is taught to one or more
classes (e.g., lecture classes A and B), and all classes of a part have the same number
of sessions (e.g., sessions 1 to 10 for each lecture class). The schema requires that all
sessions in a class have the same duration and be chronologically ranked, i.e., session
of rank 8 + 1 in a class must start after session of rank 8 � 1 ends in any solution. These
constraints are paramount to model course plans that rely on clear-cut sessions (e.g.,
starting lab classes after 2 lecture sessions, synchronizing the 5C⌘ sessions of lab classes
for a joint examination). Besides, the schema allows to restrict the possible time slots
for the sessions of a part by setting allowed and forbidden ranges using the time format.
Note that sessions must start and end on the same day, and cannot be interrupted. The
schema also specifies a set of possible resources for each session. As for students, a
sectioning plan is assumed and hard-coded together with group-to-class assignments.
Specifically, students are partitioned into groups, and groups aggregated and assigned
to classes with no group being assigned to more than one class per course part. The
schema encodes group and class headcounts as well as class headcount thresholds used
for sectioning. Other sectioning data and constraints are compiled away. The implicit
constraint to satisfy is that a group must attend all the sessions of a class it is bound to.

Teacher-to-session assignments are not fixed but subject to domain and cardinality
constraints. To meet practical needs, the schema allows multiple teachers per session
(e.g., joint supervision of a lab session) and teacher-less sessions (e.g., unsupervised
project work). The number of teachers per session is specific to each course part and
is lower- and upper-bounded, possibly fixed. Each part is also associated with a set of
required teachers and a superset of allowed teachers. Hence two sessions of a class
may be allocated different teachers and numbers of teachers. A part also sets the fixed
number of sessions a teacher is committed to. Overall, various demand and capacity
requirements relating to teaching service can be addressed on course parts. If needed,
finer-grained rules may be imposed (e.g., requiring the same staff for a class, naming a
lecturer for a session).

Similarly, each part sets the required and possible rooms for its sessions and their
number. This caters for the case of multi-room sessions (e.g., for hybrid teaching) and
room-less sessions (e.g., field trips). In addition, each part casts its sessions as room-
exclusive or room-inclusive which entails different allocation constraints. A session
is room-exclusive if none of the room(s) hosting it may simultaneously host another
session. Conversely, a room-inclusive session allows for its room(s) to be shared from
start to finish. While single-room sessions may be cast as exclusive or inclusive, multi-
room sessions may only be cast as exclusive. That is, every session of a part whose
room upper-bound is greater than 1 is considered exclusive. The rationale is that multi-
room inclusive sessions have arguably little practical interest and they also burden the
computational model with decisions to make on the distribution of groups in shared
rooms.

All resources enforce capacity constraints w.r.t. their utilization. Students, teachers
and rooms are considered cumulative resources in this respect. That is, they may at-
tend, teach or host simultaneous sessions. A cumulative model is paramount to satisfy
flexible attendance requirements (e.g., students attending tutoring sessions overlapping
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with compulsory courses) and multi-class events (e.g., an amphitheater hosting a joint
conference for different classes). Again, rules may be used to impose disjunctive re-
sources or to ban session overlapping. No limit is set on the number of parallel sessions
teachers and students may attend. Session hosting however is subject to capacity con-
straints and the schema encodes the capacity of each room, allowing for infinite capacity
to handle virtual rooms. As discussed above, at any point in time, an allocated room
will either co-host a multi-room (exclusive) session or host one or more single-room
sessions (one only if a session is exclusive). The schema hence enforces two kinds of
capacity constraints. The single-room case involves checking if the total headcount of
the session(s) falls below the room capacity. The multi-room case involves ensuring the
total capacity of the rooms envisaged for the session exceeds its headcount. If so, no
restriction is imposed as to the distribution of students in rooms and whether it preserves
group structure or not.

Lastly, the schema provides users with the ability to define their own classes of
entities, mixing course elements and resources as needed with no limit on classification
(e.g., a block of rooms, the lecturers of a faculty department). This is achieved by
labeling entities. Labels, built-in entity types and ids are the building blocks of the
query language to forge rules for any group of entities.

Table 1 provides a formal specification of the schema elements. Resources and
course elements, except sessions, are referred to as entities. Entities are typed, the set
of sessions is cast as distinct type, and each type is modeled as a finite set. The course
element hierarchy defines 1-to-many composition relations over the pair of types (- ,. )
corresponding to parent and child types in the course element hierarchy. Each relation
is modeled by a function 3-,. : - ! 2. mapping each object 8 of type - to the set
3
-,.

8
of its constitutive objects of type . . For instance, 3%, models the classes of each

part. Each compatibility relation defining the allowed or assigned resources of a course
element object for a given resource type and course element type defines a many-to-
many relation which we model the same way. For instance, 3%,' models the allowed
rooms per part and 3 ,⌧ the set of groups assigned to classes.

For notational convenience, the table also defines the maps resulting from the sym-
metric and transitive closure of the binary relation merging the composition and com-
patibility maps. This includes the maps computed over the course tree. For instance,
3
 ,% models the (singleton) part of each class, and 3⇠ ,( the sessions of a course. This

also includes the inverse compatibility constraints and those inherited along the course
tree. For instance, 3(,' models the rooms allowed for a session which results from
the composition of 3(, , 3 ,% and 3%,'. Lastly, the table defines the constants (e.g.,
number of weeks), scalar properties (e.g., room capacity), and remaining relations and
sets (e.g. required resources, labels).

2.2 Solutions

The solution schema is used to encode any solution pre-computed for an instance.
Such a solution needs not be complete, nor consistent with the instance constraints.
An instance may hence be associated with any kind of input solution based on the
computational task, e.g. no solution at all when generating a timetable from scratch,
a resource allocation solution to extend into a complete timetable, a seed solution to
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F number of weeks dividing the scheduling horizon
3 number of weekdays making a week
< number of daily slots making a 24-hour day
, = {1, . . .F} range of weeks
⇡ = {1, . . . 3} range of weekdays
" = {1, . . .<} range of daily slots
� = {1, . . .F ⇥ 3 ⇥ <} range of time points (schedule horizon)
⇠ courses
% course parts
 part classes
' rooms
) teachers
* students
⌧ groups of students
� = {⇠} course domain
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-2E- set of entities
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3
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✓ . , - 2 {',) ,*,⌧} set of entities of type . associated with entity 8 of type -

L ✓ 2⇢ labels
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(4) exclusive class sessions
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(8) inclusive class sessions
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3
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✓ � start times allowed for session B

3
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✓ - set of entities of type - tied to session B

3
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8
✓ ( set of sessions tied to entity 8 of type -

3
-,(

8
✓ ( set of sessions required by resource entity 8 of type -

<8=_A>><B%
?
2 N min number of rooms usable by each session of part ?

<0G_A>><B%
?
2 N max number of rooms usable by each session of part ?

<8=_;42CDA4A%
?
2 N min number of lecturers usable by each session of part ?

<0G_;42CDA4A%
?
2 N max number of lecturers usable by each session of part ?

B8I4
⌧

6
2 N headcount of group 6

B8I4
 

:
2 N headcount of class :

20?028CH
'

A
2 N capacity of room A
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(

B
2 � duration of session B

A0=:
(

B
2 N⇤ rank of session B in its class

B4AE824
)⇥%
C ,?

2 N number of sessions required by teacher C in part ?
Table 1: Core data model.

improve, or an inconsistent solution to repair. Formally, the solution schema supports
the representation of any decision made for a session as to its start time, its set of rooms
and its set of teachers.
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2.3 Predicates, Constraints and Rules

The UTP schema comes with a rule language to formulate instance-specific constraints.
Rule constraints add to the built-in constraints of the schema and all must be checked
when evaluating a solution. The rule language is designed to target groups of entities,
or individual entities, and constrain the scheduling of their sessions from any stand-
point (e.g., an institutional rule imposing a time structure on curricula, a disjunctive
scheduling rule applied to student groups, a rule modeling the service plan within a
faculty department, a rule for a lecturer’s agenda). The schema comes with a catalog of
timetabling predicates to build rules and compile them into constraints. It also includes
a query language to select entities and sessions on which rules should apply.

All these components are designed around the concept of e-map. Formally, an e-
map is a pair (48 , (8) mapping an entity 48 to a set (8 of sessions. The query language is
used to forge queries that retrieve sets of e-maps. Each query selects, filters and binds
entities to sessions from instance data in order to extract one or more sets of e-maps.
Each rule is bound to a predicate and scoped by a query. At flattening time, the query is
performed to retrieve a fixed number of sets of e-maps. The rule is then compiled into
a conjunction of constraints by computing the cross-product of the extracted sets and
applying the predicate to each tuple of e-maps in the cross-product. Constraint e-maps
act as guards when checking solutions and they also narrow the scope of interpretation.
The rationale is to discard constraints that are irrelevant (e.g., a teacher’s constraint
forbidding afternoon lectures while the solution only assigns him lab sessions) and,
more generally, to limit constraint checks to the proposed assignments (e.g., checking
the above lecturer’s constraint on the actual lectures the solution assigns him).

As mentioned above, each constraint applies a predicate to a tuple of e-maps. UTP
predicates either accept a fixed number of e-maps or are variadic. Their semantics may
be indifferent to the ordering of their arguments or not, and some accept parameters.
Besides, each predicate may be used indistinctly with course e-maps or resource e-
maps (i.e., e-maps pairing course elements or resources), and any n-ary constraint
may freely mix the two types (e.g., a constraint booking rooms for sessions involving
different classes). Let � = ⇢ ⇥ 2( denote the domain of e-maps, the general form of
a constraint is 2((41, (1), . . . , (4=, (=), ?1, . . . , ?<) where 2 is a predicate of arity =,
(41, (1), . . . , (4=, (=) are e-maps ((48 , (8) 2 � for 8 = 1 . . . =) and ?1, . . . , ?< are values
for the parameters of 2 (< � 0).

The semantics of constraints relies on a join operation between constraint e-maps and
solutions. Note first that any solution may be cast as a tuple of e-maps by converting the
session-to-resource assignments into resource e-maps and re-encoding the fixed maps
binding course elements to their sessions. We say an e-map is null if it pairs an entity
with an empty set of sessions, and, by extension, a tuple of e-maps is null if it includes
a null e-map. Given a solution and an e-map for some entity, we call joint e-map the
pairing of the entity with the set of sessions on which the solution and the e-map agree,
i.e., the set-intersection of the sessions of the e-map and those assigned/bound to the
entity in the solution encoding. We say a solution is inconsistent with an e-map if their
joint e-map is null. The join operation extends to tuples by performing the operation
component-wise and a solution is said to be inconsistent with a tuple of e-maps if its is
inconsistent with at least one e-map in the tuple.
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The evaluation of a solution against a constraint is conditioned by the tuple of e-maps
joining those of the solution and the constraint. If the joint tuple is null, the constraint is
considered satisfied (i.e., it is deemed irrelevant and discarded). Otherwise, the predicate
is evaluated on the joint e-map and the result depends on its built-in semantics. Specif-
ically, the predicate is assessed on the tuple of sets obtained by substituting each set of
sessions in the joint e-map either by the set of their assigned start times, or the set of their
assigned resources of a given type (rooms, etc). Which type (time or resource type) to
pick per e-map is fixed and predicate-specific (e.g., a temporal predicate will substitute
any e-map argument by start times). Note that entities play no role in the evaluation once
the join and substitution operations are over: each predicate is ultimately evaluated on
sets made of start times or sets of resources. Note also that join operations leave course
e-maps unchanged unlike resource e-maps. This means constraints applying exclusively
to course e-maps are de facto unconditional.

The UTP catalog provides predicates to cover the various dimensions of time–tabling
problems. Some only address scheduling (i.e., start times), others room allocation, and
so on. Table 9 and Table 10 given in Appendix describe the predicates of the catalog and
provide their semantics. Syntactically, each rule binds a predicate to a query and denotes
the conjunction of constraints obtained by applying the predicate to each tuple of e-maps
extracted by the query. A rule has the form 2h&, ?1, . . . , ?<i and is interpreted by the
formula

8(41, (1) 2 »&1…, . . . , (4=, (=) 2 »&=… : 2((41, (1), . . . , (4=, (=), ?1, . . . , ?<)

where 2 is a predicate of arity = accepting < parameters (< � 0), & is a query sized
to extract = sets of e-maps, »&8… denotes the 8-th set of e-maps extracted with &

(8 = 1 . . . =), and ?1, . . . ?< are values for the parameters of 2.

3 A Feature Model

This section introduces a feature model for educational timetabling problems based on
the UTP schema. The model is not meant to be exhaustive, nor stable, but is a first attempt
to capture the key variability points (the features) in the family of instances that can be
expressed with the schema. Some features are plain flags characterizing the compliance
of an instance to the schema (e.g., whether courses are hierarchically structured or not)
while others are logical assertions on instance data (e.g., whether the number of weeks
is set to 1 or not). In either case, each feature may be checked against any instance and,
in turn, instances classified into different classes based on the features they satisfy.

The feature model hence decomposes the space of UTP problems which serves dif-
ferent purposes. One is to quickly assess whether the schema is applicable to a particular
setting. Another is to provide a straightforward characterization of problem classes, sim-
ilarly to the way 3-field notation is used in other scheduling domains [27,3,1].The aim
is also to facilitate the comparison of UTP with competing schemas, possibly paving the
way for formal reductions between problems and conversions between schemas. Lastly,
the feature model can guide the configuration of efficient computational models by using
features to reformulate or optimize built-in constraints and predicate implementations.
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We first recall the basic notations and definitions commonly used in feature mod-
eling languages [31,19,44]. A feature model is a tree-like structure connecting features
and factoring in different feature configurations. A configuration is a subset of fea-
tures selected from the model. The configuration process is subject to constraints that
primarily capture dependencies that exist between a feature and its children (a.k.a., sub-
features). These fall into 4 categories: mandatory sub-feature (it must be selected if the
parent is) labeled by •, optional sub-feature (it may be selected if the parent is) labeled
by �, or-feature (at least one of the sub-features must be selected) labeled by +, and
xor-feature (exactly one sub-feature must be selected) labeled by 1. Finer-grained cardi-
nality constraints may apply as well as cross-tree constraints modeling dependencies or
incompatibilities between features that sit in different branches.

Table 2 details our feature model. The feature-tree (rotated anticlockwise by 90°) has
3 levels: the root node (not shown), its sub-features and their labels shown respectively
on the 2nd and 1st columns and their variants shown on the next 2 columns. For instance,
selecting feature hosting in a configuration requires selecting at least one of no-room,
single-room or multi-room. The last column provides the formal or informal charac-
terization of each leaf feature. The sub-features of the root characterize core structural
elements (course and time structure), orthogonal decision layers (scheduling, room al-
location, etc.), and cross-cutting concerns (session planning, resource availability, etc.).
The latter is tagged optional and so are hosting and teaching as these decision layers
may be out of scope in an instance. We explain next the variants of these sub-features.

course-hierarchy applies to instances whose course elements are nested hierarchi-
cally. event applies when events unrelated to courses (e.g., staff meetings) must be
scheduled too. The next 3 features characterize the sparsity and scope of the time hori-
zon. full-period indicates if it is built on consecutive calendar weeks and full-week if
a weekday is missing. single-week checks whether the instance is restricted to a single
week which is typical of timetabling practices in high schools. The next 3 character-
ize the temporal structure imposed on sessions from “time grids” in high-schools to
free-flow timetables for higher grade curricula. no-overlap holds true if sessions can
never overlap if they start at different times, same-duration if all sessions have the same
duration, and modular if every session length, break time included, breaks down to a
unit session length (e.g., some sessions are 1h long and any other session is measured
in hours).

The next features characterize room utilization. no-room, single-room, multi-room,
hold true if the instance includes a session that demands no room, a single room or
more than 1 room, respectively. Similar features are introduced for the demand on
teachers. all-exclusive, none-exclusive, some-exclusive, indicate if the instance includes
only room-exclusive sessions, only inclusive sessions or a mix, respectively. room-
capacity, service, and sectioning apply if resp. room capacity, teaching service and
student sectioning are in scope. As for teaching, session-overlap indicates if teachers
are cast as disjunctive resources (the counterpart is introduced for students). Lastly, the
sub-features of crosscutting capture cross-cutting concerns and we simply list examples
of constraints taken from the UTP catalog to convey the meaning.
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calendar allowed_slots, forbidden_slots, allowed_grids, ...
regularity periodic, allowed_grids,same_rooms, different_teachers, ...

orchestration same_start, different_day, sequenced, no_overlap
workload compactness, gap, ...
logistics same_rooms, adjacent_rooms, different_teachers, ...

resourcing allowed_rooms, required_teachers, ...
Table 2: A feature model for UTP.

4 Related Work

The design of timetables is a widely studied problem. Given the multitude of situ-
ations encountered, simpler, specialized variants of the general problem have been
created in order to produce solutions within an acceptable time frame. The best-known
variants include ETT (Exam Timetabling) [11,25] which focuses on exams, PE-TT (Post-
Enrolment-based Timetabling) [43,51] in which students register for the courses they
wish to take, CB-TT (Curriculum-Based Timetabling) [39,5,32], in which students enroll
for a curriculum that includes all the courses they have to take, TAP (Tutor Allocation
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Problem) [15], which manages the allocation of teachers after the course slots have been
set, and HTT (Highschool Timetabling) [33,22], which deals with timetables for high
schools.

A timetable design problem is broader than simply scheduling lessons. It depends, for
example, on student sectioning [20,6] which consists in dividing students into different
groups. But it can also be the starting point for other problems such as BACP [50,18]
which seeks to balance teaching periods. Given the difficulty of finding a solution,
these ancillary problems are often solved beforehand. Simplification assumptions and
resource management differ from problem to problem. Table 3 uses the feature model
to compare the scope of the different problems, highlighting the common features and
differences.

Although widely studied, the problem of timetable design is often dealt with on an
ad-hoc basis. It is a crucial problem in the management of certain institutions which
seek above all to produce a solution to their specific problem. This explains the het-
erogeneity of approaches, making it difficult to evaluate and compare work in the field.

Features Problems ETT CB-TT PE-TT HTT TAP

courses course-hierarchy X
event X X X

timing
full-period X
full-week X X X
single-week X X

scheduling
no-overlap X X X X
same-duration X X X X
modular X X X X

hosting

no-room NA
single-room X X X X NA
multi-room X X NA
room-capacity X X X NA
none-exclusive X NA
all-exclusive X X X X NA
some-exclusive X X X X NA

teaching

no-teacher X X
single-teacher X X X X X
multi-teacher X X X
session-overlap X X X X
service X X

attending session-overlap X X X X
sectioning X X X

crosscutting

calendar X X X X
regularity X X X
orchestration X X X
workload X X X X
logistics X X
resourcing X X X

Table 3: Problem features: a comparison.
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The emergence of competitions such as ITC (International Timetabling Competition)
has led to the creation of standardized formats, making it easier to compare approaches.
ITC-2007, one of the most studied schemas, provides a simplified representation of ETT,
PE-TT, and CB-TT. In this schema, the aim is to assign one room and one teacher to each
session (single-room,single-teacher). The description of academic courses is carried in
CB-TT by the curricula which group the courses together, and in PE-TT by the students
(session-overlap). The teachers service is assumed to have already been resolved up-
stream. A teacher assigned to a course does all the sessions of a course, and sessions are
otherwise exclusive (session-overlap). Time is expressed in terms of relative slots, i.e.,
there is a standard duration of one lesson between 2 slots (no-overlap). Class sessions
also all have the same duration (same-duration) and daily slots are repeated in the same
pattern every day (synchronous).

The XHSTT-2014 [45,23,21] schema, based on the ITC schema, focuses mainly on
modeling timetables for secondary schools. Ancillary problems are solved beforehand:
generation of groups, breakdown of rooms, teacher services. In addition to the usual
resources (rooms, teacher, students, etc.), it is possible to represent other types of
resource (e.g. equipment, vehicles, etc.). However, it is possible to leave out a set of
resources on which to make a choice of allocations when solving (single-room,single-
teacher). A pre-fit is carried out upstream of the schema to reduce the set of rooms to
those authorized according to the size of the groups of students (room-capacity, group).
The schema generally contains a single time grid, but there’s nothing to stop having
several. With this schema, the objective of the solver is to build a typical week (single-
week,periodicity). The model proposes a catalog of constraints: hard constraints are
interpreted as core constraints, while soft constraints have a violation score to minimize
(session-distribution). Constraints can be imposed on resources (resource-distribution).

The ITC-2019 [41,38,30] model focuses specifically on university timetables, more
specifically anglo-saxon universities. The ITC-2019 schema addresses scheduling as
a combinatorial optimization problem, with a cost function that takes into account 4
criteria. The criteria concern the choice of time slots for sessions, rooms for sessions,
violations of soft constraints and the overlap of sessions per student (session overlap).
This model takes into account a time horizon of several weeks (full-period,full-week.
Timetables are defined as the repetition over a set of weeks (multi-week) of one or
more sessions of the same duration starting on specific days of the week at the same
predefined time (periodicity). Each room has a penalty score for a session. This has an
impact on the choice of room (single-room, exclusive-room). The choice has been made
not to represent teachers, nor groups of students. A problem expressed in this model
comprises a constraint catalog made up of flexible constraints with a penalty score. The
catalog of constraints is used to ensure quality and to express the different needs of the
timetable (session-distribution, availability).

The UTP schema [9] has been designed to represent problems in which students
enrol on courses. As with the other schemas, simplifications are made. For example, it
is assumed that students are divided up into groups beforehand, just like the teachers
(the allocation of a teacher to a group and a session is done during the design process).
It allows problems to be represented over a modular time horizon and clearly identifies
teachers. It also allows resources (rooms, teachers, etc.) to be treated disjunctively or
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Features Schemas ITC-2007 ITC-2019 XHSTT-14 UTP

courses course-hierarchy X X
event X X X

timing
full-period X X X
full-week X X X X
single-week X X

scheduling
same-duration X X X X
no-overlap X X X X
modular X X X X

hosting

no-room X X
single-room X X X X
multi-room X
room-capacity X X X
all-exclusive X X X X
none-exclusive X
some-exclusive X

teaching

no-teacher NA X X
single-teacher X NA X X
multi-teacher NA X
session-overlap NA X X
service NA X

attending session-overlap X X X
sectioning X X

crosscutting

calendar X X X X
regularity X X X X
orchestration X X X X
workload X
logistics X
resourcing X X X

Table 4: Schema features.

cumulatively according to need. A few changes have been made since [9]. In [9], the
problem of groups sectioning is dealt in conjunction with that of designing the timetable.
However, a timetable is often designed on the basis of provisional enrolments, as the
definitive enrolments are not yet closed. It is therefore not possible to set up the actual
groups at such an early stage. It is interesting to be able to dissociate these two problems
and, as with the other schemas, sectioning is considered to have been resolved upstream.
The UTP schema takes as input the list of groups formed. In [9], the time grid is identical
whatever the week. In the current version, this can be adapted for a particular day or set
of days in the entire time horizon.

Most of the schemas presented above stem from a desire to abstract and generalize
a real variant of the problem. Thus, certain assumptions and simplifications are made,
limiting the expressiveness of the schema, in particular to express other variants orthog-
onal to the initial assumptions. By analyzing Table 4, we can cite 3 cases where these
simplifying assumptions prevent the representation of other variants: the management
of the time horizon, the management of teacher services and the management of re-
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sources. As far as time horizon management is concerned, only ITC-2019 and UTP can
represent a problem with a time horizon longer than a week. Managing the timetable
on a weekly basis is incompatible with institutions where each week is different. With
the exception of UTP, no schema takes into account the representation of a teacher’s
service. They consider that teachers are assigned upstream and cannot be exchanged.
However, when several groups follow the same course and several teachers are involved,
this removes flexibility and prevents certain solutions that could be of high quality from
being achieved. Finally, the management of resources also differs from one schema to
another. XHSTT and UTP allow teachers to be represented as such, whereas the ITCmod-
els do not explicitly include them. In addition, whether for rooms or teachers, the various
schemas, apart from UTP, do not allow the resource to be shared over several sessions.
For example, it is not possible to represent a problem where one teacher supervises
several practical sessions. Nor is it possible to represent a problem in which a session
must be hosted in several rooms (adjacent or not). Only UTP can represent problems in
which the resources are disjunctive or cumulative.

Competitions are regularly organized [29] and provide an opportunity to make
available a set of real or fictitious instances, enabling any new algorithm to be compared
with existing approaches. Whether for simulation or comparison purposes, it is useful to
have a means of generating new instances. Only the ITC-2007 schema has an instance
generator. Developed in 2008, this generator was improved in 2010 and again in 2022
to produce more realistic instances and better cover the range of possible configurations
(available on [2]).

5 Instance Generator and Experiments

This section introduces a generator of pseudo-random UTP instances and reports on
experiments carried out with three models, namely, CP, ASP and MIP. The objective is
to assess the scalability of the models and their applicability to real-life instances. The
complete list of instances and the models may be found in Appendix.

5.1 Instance Generator

To generate a UTP instance involves generating a course structure, groups of students,
teacher services, and rules. All those generators can be configured thanks to XML files to
select the features we want our instance to fit in.

In our generator, we define curricula associated with faculty departments. Curricula
enable us to associate a set of courses with a set of students and a set of teachers. Each
department is associated with a set of courses, teachers and specific rooms (i.e. rooms
that can be used only by courses of the department). The courses are divided into several
parts. The number of parts usually varies between 1 (only lectures) and 4 (lectures,
tutorials, practices and evaluations).

Student sectioning is the problem of assigning students to groups. The UTP schema
takes groups, rather than individual students, necessitating that the generator supply
groups. The input of the generator is the number of students enrolled in a curriculum.
A CSP model is used by the generator to create groups. The different sizes of groups
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name |' | |) | |* | |( | #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

gi8201 82 4 33 118 23 0.86 1.86 15.71 0.08 0.30 0.23 0.17 0.26
gi5301 99 96 55 139 33 0.85 483.59 68.70 0.36 0.40 0.12 0.22 0.49
gi4389 65 6 174 662 33 1.47 4.62 693.40 210.58 14.91 4.93 7.66 10.23
gi5567 94 94 1770 6180 562 4.75 381.78 122.89 3548.58
gi2767 92 21 501 2003 78 2.02 30.48 128.21 57.11 130.51 7995.32
real 117 183 768 2625 520 2.21 8.71 219.97 411.79 - -
Table 5: Selected list of instances. |' | is the number of rooms, |) | the number of teachers,
|* | the number of students, |( | the number of sessions, #ru the number of rules; BT is
the building time (s) and ST the solving time (s).

(lecture, tutorial, practice) should be given. It is possible to change the size of a specific
group for a curriculum (e.g., a specific curriculum with group sizes different from the
standard ones). The sectioning CSP can create groups with a fixed size, or create courses
with a limited number of groups, to fix the total number of hours. Teaching service is
a problem where we know how many hours a teacher has to do, how many hours each
part of a class lasts, and we want to assign each teacher with a number of classes in each
part. This will give us all the course parts a teacher has to teach. Note that we just know
how many classes a teacher is assigned to, not to which class, which is another problem
known as the tutor allocation problem. The generator uses a CSP model to tackle this
problem.

There are various rules, often used together with some being more common. We
defined three rule packs: 1) light: some classes have same_rooms, same_teachers,
periodic, and a sequenced rule between two parts of the course; 2) medium: all
classes have same_rooms and same_teachers, with some also having periodic
and sequenced; 3) heavy: like medium, but with additional same_teachers and
same_start rules for classes in the same part.

5.2 Instances and Results

We carried out experiments on pseudo-random instances built with our generator and
on a real-life instance from our Computer Sciences department. The pseudo-random
instances are listed in Appendix 6 and may be downloaded from [4]. A selected subset
is given in Table 5.

The generated instances were built by varying the number of rooms, groups and ses-
sions. All are single-room and single-teacher and uses the “medium” rules pack, meaning
that all classes have same_rooms and same_teachers, and some have periodic and
a sequenced constraint between 2 different parts of the same course. The real-life in-
stance consists of the 3 years of bachelor and the 2 years of master in Computer Sciences
at the University of Angers in 2023. The instance is reduced only to courses that occur
at the first time period of each curriculum.

The experiments were performed on a computer with a processor Intel-Xeon E7-
4850 v4, 2.1 GHz, 40MB of cache. The CP solver is Choco-solver [49] 4.10.12. The ASP
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solver is Clingo [24] 5.6.2. The CASP solver is Clingcon [46] 5.2.0. The MIP solver is
Gurobi Optimizer [28] 10.0.3. The building (BT) and solving (ST) times can be found in
Appendix 6. Table 5 shows selected instances: an instance where all solvers performed
well (gi8201) and the worst-case instances in run-time for CP (gi5301), ASP (gi4389),
CASP (gi5567) and MIP (gi2767). Those instances show the limits of the solvers. In
particular, the more sessions there are, the more difficult it is for ASP and MIP to solve
instances to completion. Some instances could not be solved by ASP as it may need more
than 80GB when MIP instances use up to 15GB, and CP and CASP only need 8GB. Some
instances could not be solved by MIP due to time outs with a time limit set to 5 hours.

6 Conclusion

In this article, we focused on a class of timetabling problems (UTP), proposing a frame-
work that can adapt to different types of institutions, whether they operate like high
schools or universities, and to account for regular classes, exams, meetings, or special
events. Our current work addresses several aspects. Firstly, we aim to experiment on
larger real-world instances and are developing a set of software applications for this
purpose. We are also working on incorporating soft constraints and priorities to propose
a solution in cases where there is no solution that satisfies all expressed constraints.
Finally, we are working on timetable revisions to accommodate unforeseen events such
as teacher absences or room unavailability.
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Appendix A – Core Computational Model

UTP instances are cast as hard constraint satisfaction problems. We present here a formal
specification of the constraint-based model for the entity schema. This core model only
formulates the built-in constraints that apply to any instance, leaving out the constraints
generated from instance-specific rules.

Table 6 lists the core decision variables of the model and includes auxiliary variables
for notational convenience. All, except temporal variables, are cast as set variables.
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2 " (auxiliary variable) the daily slot of the start time assigned to session B

Table 6: Core and auxiliary decision variables.

Table 7 formulates the core constraints of the model. Note that some statements reify
primitive constraints (e.g., set memberhsip) as implicit pseudo-boolean variables.

Constraint (1) establishes the relationship between the start time of a session and its
start points on the 3 time scales. (2) restricts the start time of a session to the allowed
start points. Constraint (3) ensures that every session starts and ends on the same
day. Constraint (4) sequences the sessions of a class based on ranks. (5) models the
sets of possible and required rooms for a session as set inclusion constraints. (6) is the
counterpart for teachers. (7) and (8) set the bounds on the number of rooms and teachers
per session. (9) models the service constraint for each teacher measured in number of
sessions. Constraints (10) and (11) model the cumulative capacity of rooms and address
the 3 hosting scenarios discussed in Section 2.1 (multi-room exclusive, single-room
exclusive and single-room inclusive sessions). (10) ensures any (single- or multi-room)
exclusive session allocated to a room virtually fulfills the room capacity and hence has
exclusive use of it. Otherwise, the total headcount of the inclusive session(s) occupying
the room at any time must not exceed its capacity. Constraint (11) models the capacity
demand of each session, be it single- or multi-rooms, and ensures its allocated room(s)
meet the demand.
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Table 7: Core constraints.

Appendix B – Rules Syntax and Constraint Predicate Catalog

Table 8 provides the syntax of the rules language: e-maps, constraints, queries and rules.

(48 , (8) e-map mapping entity 48 to the set of sessions (8
� = ⇢ ⇥ 2( the domain of e-maps
2((41, (1), .., (4=, (=), ?1, .., ?<) constraint of predicate 2, arity =, parameters ?1, .., ?<

and e-map arguments (41, (1), .., (4=, (=) 2 �=
O = 1..max

B2(
A0=:

(

B
the range of session ranks

L⇤ = L [ {⇢} [ {{4} | 4 2 ⇢} the set of labels
& = [

=�1 (E ⇥ L⇤ ⇥ 2O)= the language of queries
2h&, ?1, . . . , ?<i rule of predicate 2, query & and parameters ?1, . . . ?<

- 2 predicate of arity = and number of parameters <
- & query sized to extract = sets of e-maps
- ?1, . . . ?< values for the parameters of 2

Table 8: Predicates, constraints, queries and rules.

Table 9 lists and describes the predicates of the catalog.
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Predicate Description
adjacent_rooms Sessions must be adjacent in the given room(s)
allowed_grids Sessions may only start in the given time grid(s)
allowed_rooms Sessions may only be hosted in the given room(s)
allowed_slots Sessions may only run in the given time slots
allowed_teachers Sessions may only be taught by the given teacher(s)
assign_rooms Sessions are hosted in the given room(s)
assign_start Sessions start at the given time
assign_teachers Sessions are taught by the given teacher(s)
compactness The sessions makespan is bounded
different_daily_start Sessions start on different daily slots
different_day Sessions start on different days
different_rooms Sessions are hosted in different rooms
different_starts Sessions start at different times
different_teachers Sessions are taught by different teachers
different_week Sessions start on different week
different_weekday Sessions start on different weekday
different_weekly_start Sessions start on different weekly time points
forbidden_rooms Sessions cannot be hosted in the given room(s)
forbidden_slots Sessions cannot run in the given time slots
forbidden_teachers Sessions cannot be taught by the given teacher(s)
gap Gaps between sessions are bounded
no_overlap Sessions in the given set cannot overlap
pairwise_no_overlap Sessions cannot overlap if in different sets
periodic Sessions are periodic
required_rooms Sessions must be hosted in the given room(s)
required_teachers Sessions must be taught by the given teacher(s)
same_daily_start Sessions start on the same daily slot
same_day Sessions start on the same day
same_rooms Sessions are hosted in the same room(s)
same_start Sessions start at the same time
same_teachers Sessions are taught by the same teacher(s)
same_weekday Sessions start on the same weekday
same_weekly_start Sessions start on the same weekly time point
same_week Sessions start on the same week
sequenced Sessions run sequentially
sessions_workload The number of sessions per time frame is bounded
times_workload The total duration of sessions per time frame is bounded

Table 9: Catalog of UTP constraint predicates.
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Table 10 provides the semantics of each predicate once the scope is restricted to a
tuple of sets of sessions (obtained after joining a solution and a constraint built with
the predicate). Given a =-ary predicate 2 accepting < parameters (< � 0) and given
a =-uple ((01, . . . , (0=) 2 (=, we provide the semantics for 2((01, . . . , (0=, ?1, . . . , ?<)
which denotes the evaluation of the predicate on the tuple.
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B
= 3}|  F2 (48)

Table 10: Semantics of UTP constraint predicates
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Appendix C – Models

The CPmodel (see table 11 in appendix 6) for UTP is based on decisions variables listed
in table 6. For the constraint related to teacher service (requiredTeacher), we using the
global cardinality constraint (gcc), which enables element counting. It is also feasible to
add counting constraints to better distribute the workload or limit the number of hours per
day for a room, aiming to achieve more robust solutions. For conditional constraints, we
can apply the reification pattern (checking the feasibility and consumption of potential
values and use possible sink state). For constraints of equality, we employ the global
constraint all_equal, which ensures for input variables, all have the same value (the
implemented propagator is similar to gcc). For the no_overlap constraint and for the
main room usage constraint, we employ the global cumulative constraint to ensure
that, when sessions utilizing a resource, its maximum capacity is not exceeded, thereby
preventing multiple class sessions from overlapping. For difference/disjoint constraints,
we used the global n-ary constraints all_different for integer variables and all_disjoint
for set variables.

ASP [8] is a form of declarative programming for solving difficult search problems.
It operates by defining problems in terms of rules and constraints, then computing the
“answer sets” which are collections of assumptions that satisfy rules and constraints
without contradiction. The programmer specifies the desired properties of the solution
in a high-level language, and the ASP system automatically searches for all solutions
that meet these criteria, making it a powerful tool for knowledge representation and
reasoning tasks. ASP has been used to address timetabling problems proposed in the
ITC-2007 competition [7]. The ASP program we propose for UTP (see appendix 6 for
the full program) has been developed with clingo - an ASP solver - and clingcon - a
constraint answer set programing solver.

In the state of the art [47,35], mixed-integer linear programming (MIP) models
are usually used to solve timetable scheduling problems. In the literature, MIP models
are presented in a pseudo-Boolean format, where time is represented in a time-indexed
representation. This implies that time is discretized into intervals from 0 to 1 for each time
slot. For the UTP problem, where the time horizon is extended, classical representations
are not very efficient. Indeed, time-indexed representations exhibit exponential growth.
In other scheduling problems such as RCPCSP, representations can be time-indexed,
or as in CP in continuous time slots (integer value), or even an event-based approach.
Continuous time variables in MIP offer advantages in terms of variable economy, but
they require techniques such as big-M to express disjunctions. In some articles [34], it
has been demonstrated that event-driven approaches are more effective than continuous
or time-indexed approaches for extended time horizons. Here, we present a MIP program
for UTP. The program will be used in our experimental study at Section 5(see Appendix 6
for the full program).
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C.1 – CP model
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Table 11: Constraints and predicates of the CP model.
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C.2 – ASP model

The ASP model is split in two parts: the first part lists the facts with a small example
(Listing 10.1), the second part is the declaration of rules to solve the given UTP problem
(Listing 10.2).

1 weeks(4). days(12). slot_per_day(1440).grid(480,90,7).
2 courses(1). parts(2).classes(3). sessions(12).
3 room(Salle -1,40). room(Salle -2,20). room(Salle -3,20).
4 course(math). teacher(teacher1).teacher(teacher2).
5 part(math-CM,12,120,5,12,2,1). class(math-CM-1,80).

course_part(math,math-CM).
6 part_class(math-CM,math-CM-1). class_sessions(math-CM-1,1..12).
7 part_teacher(math-CM,(teacher -1;teacher -2)).
8 part_room(math-CM,(salle -1;salle -2;salle -3)).
9 part_days(math-CM,1..5). part_weeks(math-CM,1..12).

10 part_slots(math-CM, (480;570;660;750;840;930)).
11 part_grids("cours-1-pCM",1,1,6).
12 group(group -1,20).group(group -2,20).

class_group(math-CM-1,(group -1;group -2)).
13 session_duration(S,D) :- session(S),session_part(S,P),

part_grids(P,_,D,_).
14 session_group(S,G) :- class_sessions(C,S),class_group(C,G).
15 session_part(S,P) :- session(S), class_session(C,S),

part_class(P,C).
16 session_teacher(S,T) :- session(S), session_part(S,P),

part_teacher(P,T).
17 session_room(S,R) :- session(S), session_part(S,P),

part_room(P,R).
18 sequenced(3,(6;7)).
19 periodic(S1,S2,7200) :- session(S1),session(S2),S2 = S1+1 .
20 disjunctive_room((1..12),R):- room(R,_).
21 disjunctive_teacher((1..12),T):- teacher(T).

Listing 10.1: ASP facts
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1 1{assigned(S,SL) : session_part(S,P), part_slot(P,SL)}1 :-
session(S).

2 nrPositionRoom(S,1..N) :- session(S), nrRoomMax(S,N).
3 nrRoomMax(S,N) :- session(S), session_part(S,P),

part(P,_,_,_,_,N,_), N > 1.
4 sessionRoomFix(S) :- session(S), not nrRoomMax(S,_).
5 partRoomFix(P) :- part_sessions(P,S), sessionRoomFix(S).
6 partRoomMulti(P) :- part_sessions(P,S), nrRoomMax(S,N).
7 K{assignedrk(S,SL,I) : nrPositionRoom(S,I)}K :- assigned(S,SL),

nrRoomMax(S,K).
8 1{assignedr(S,SL,R,K) : session_room(S,R)}1 :-

assignedrk(S,SL,K).
9 1{assignedr(S,SL,R,1) : session_room(S,R)}1 :- assigned(S,SL),

sessionRoomFix(S).
10 1{assigned(S,SL) : session_part(S,P), part_slot(P,SL)}1 :-

session(S).
11 nrPositionTeacher(S,1..N) :- session(S), nrteacherMax(S,N).
12 nrteacherMax(S,N) :- session(S), session_part(S,P),

part(P,_,_,_,_,_,N), N > 1.
13 sessionTeacherFix(S) :- session(S), not nrteacherMax(S,_).
14 partTeacherFix(P) :- part_sessions(P,S), sessionTeacherFix(S).
15 partTeacherMulti(P) :- part_sessions(P,S), nrteacherMax(S,N).
16 K{assignedtk(S,SL,I) : nrPositionTeacher(S,I)}K :-

assigned(S,SL), nrteacherMax(S,K).
17 :- assignedt(S,_,T,K2), assignedt(S,_,T,K1), K1 != K2.
18

19 :- not {assignedt(S,SL,T,K) : session(S),
disjunctive_teacher(T,S), nrPositionTeacher(S,K) } 1,
slots(SL), teacher(T).

20 :- not {assignedt(S,SL,T,1) : session(S),
disjunctive_teacher(T,S) } 1, slots(SL), teacher(T).

21 :- nrRoomMax(S,_), session_class(S,C), class_headcount(C,N), N
> #sum{V:assignedr(S,_,R,_),room(R,V)}.

22 :- assignedr(S,SL,R,1), room(R,C1),session_class(S,C),
class_headcount(C,N), N > C1.

23 :- not {assigned(S,SL) : session(S),disjunctive_group(S,G)}1,
group(G,_), slots(SL).

24 :- not {assignedr(S,SL,R,K) : session(S),
disjunctive_room(R,S), nrPositionRoom(S,K) } 1, slots(SL),
room(R,_).

25 :- not {assignedr(S,SL,R,1) : session(S), disjunctive_room(R,S)
} 1, slots(SL), room(R,_).

26 :- assignedr(S,_,R,K2), assignedr(S,_,R,K1), K1 != K2.
27 :- periodic(S1,S2,N), assigned(S1,SL1), assigned(S2,SL2), SL2

!= SL1+N.
28 :- sequenced(S1,S2), assigned(S1,SL1), session_part(S1,P),

part_grids(P,_,N,_), assigned(S2,SL2), SL1+N > SL2.
29 sequenced(S1,S2) :- part(P,_,_,_,_,_,_), part_class(P,C),

class_sessions(C,S1), class_sessions(C,S2), S1+1 = S2.
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30 :- same_slot(S1,S2), assigned(S1,SL1), assigned(S2,SL2), SL1 !=
SL2.

31 :- same_teachers(S1,S2), assignedt(S1,_,T1,K),
assignedt(S2,_,T2,K), T1 != T2.

32 :- same_rooms(S1,S2), assignedr(S1,_,R1,K),
assignedr(S2,_,R2,K), R1 != R2.

33 :- same_rooms(S,S2), nrRoomMax(S,_), not nrRoomMax(S2,_).
34 :- assign_rooms(S1,R1), assignedr(S1,_,R2,_), R1 != R2.
35 :- assign_teachers(S1,T1), assignedt(S1,_,T2,_), T1 != T2.
36 :- serviceTeacher(T,P,N), #count { S,T

:assignedt(S,_,T,_),part_sessions(P,S)} != N.

Listing 10.2: ASP model
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C.3 – MIP model

8? 2 %, '0 = 3%,'
? ,

8B 2 3%,(
? , 8A 2 ' \ '0 , G(,'B,A = 0

(1)
8? 2 %, ) 0 = 3%,)

? ,

8B 2 3%,(
? , 8C 2 ) \ ) 0 , G(,)B,C = 0

(2)
8? 2 %, 8B 2 3%,(

?

<8=_A>><B%? 
Õ
8A2'

G
(,'
B,A  <0G_A>><B%? (3)

8? 2 %, 8B 2 3%,(
?

<8=_;42CDA4A%? 
Õ
8C2)

G
(,)
B,C  <0G_;42CDA4A%? (4)

8? 2 %, 8: 2  
B8I4

 
: 

Õ
A2'

G
(,'
B,A ⇤ 20?028C H'A (5)

8B 2 ( :
G
(,"
B + (G(,⇡B � 1) ⇤ |" | + (G(,,B � 1) ⇤ |⇡ | ⇤ |" | = G(,�B (6)

5 >A18334=_?4A8>3 ((0 , �0)= 8B 2 (0 , ⌘ = <8=(�0 ) ,
B⌘ 2 {0, 1}
(G(,�B � ⌘) � ( (;4=6C⌘(B +" ) ⇤ B⌘ � " )
(⌘ � G(,�B ) � ( ( |�0 | +" ) ⇤ B⌘ � " )

(7)
5 >A18334=_A>><B ((0 , '0 ) = 8B 2 (0

8A 2 '0 , G(,'B,A = 0
(8)

B0<4_F44:30H ((0 ) = 8B1 , B2 2 (0 , B1 < B2
G
(,⇡
B1 � G(,⇡B2 = 0

(9)
B0<4_BC0AC ((0 ) = 8B1 , B2 2 (0 , B1 < B2

(G(,�B1 � G(,�B2 ) = 0
(10)

B0<4_A>><B ((0 ) = 8B1 , B2 2 (0 , B1 < B2
G
(,'
B1 = G(,'B2 (11)

0BB86=_A>><B ((0 , '0 ) = 8B 2 (0 ,
8A 2 ', G(,'B,A = 1

(12)
38 5 5 4A4=C_A>><B ((0 ) = 8B1 , B2 2 (0 ,

8A 2 ', G(,'B1 ,A + G
(,'
B2 ,A  1

(13)
?4A8>382 ((0 ) = 8B1 , B2 2 (0 , B1 < B2 ,

(G(,�B1 + =) = G(,�B2 (14)
B4@D4=243 ((1 , (2 ) = 8B1 2 (1 , B2 2 (2

(G(,�B1 + ;4=6C⌘(B1 )  G
(,�
B2 (15)

A4@D8A43_C402⌘4AB ((0 , !⌧) = 8B(0 , 8C 2 ) , 8f 2 N
(ÕB2% G(,)B,C )  f

(16)
=>_>E4A;0?_A>><((0)= 8B1 , B2 2 (0 ,

>A3B1 ,B2 , >A3B2 ,B1 2 {0, 1}, A1A2 2 {0, 1}
A1A2  G(,'B1 , A1A2  G(,'B2 , A1A2 � (G(,'B1 + G(,'B2 � 1)
A1A2 � >A3B1 ,B2 , A1A2 � >A3B2 ,B1
(G(,�B1 � G(,�B2 ) � ( (;4=6C⌘(B2 +" ) ⇤ >A3B1 ,B2 � " )
(G(,�B2 � G(,�B1 ) � ( (;4=6C⌘(B1 +" ) ⇤ >A3B2 ,B1 � " )

(17)
=>_>E4A;0?_6A>D? ((0)= 8B1 , B2 2 (0 ,

>A3B1 ,B2 , >A3B2 ,B1 2 {0, 1}, >A3B1 ,B2 + >A3B2 ,B1 = 1
(G(,�B1 � G(,�B2 ) � ( (;4=6C⌘(B2 +" ) ⇤ >A3B1 ,B2 � " )
(G(,�B2 � G(,�B1 ) � ( (;4=6C⌘(B1 +" ) ⇤ >A3B2 ,B1 � " )

(18)



94 C. Behuet et al.

Appendix D – Complete list of instances

name |' | |) | |* | |( | #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

gi5167 87 4 33 81 19 0.86 0.97 55.41 1.93 0.34 0.06 0.04 0.11
gi678 60 101 30 117 22 0.86 0.89 48.04 2.61 0.60 0.10 0.13 0.21
gi8201 82 4 33 118 23 0.86 1.86 15.71 0.08 0.30 0.23 0.17 0.26
gi8445 83 12 45 110 25 0.93 2.44 54.78 1.39 0.62 0.05 0.21 0.33
gi5301 99 96 55 139 33 0.85 483.59 68.70 0.36 0.40 0.12 0.22 0.49
gi9456 102 15 73 186 27 1.02 2.74 190.18 15.01 2.35 0.28 0.29 0.52
gi42910 84 96 110 163 30 1.03 1.87 146.45 1.25 0.49 0.18 0.16 0.30
gi29910 100 33 49 163 33 1.03 11.14 129.40 4.17 1.10 0.14 0.43 0.83
gi8601 104 97 143 200 16 0.99 0.98 42.49 4.93 0.40 0.17 0.08 0.14
gi6012 125 97 65 175 36 1.06 2.66 296.48 11.96 1.38 0.66 0.25 0.94
gi6101 85 100 48 212 40 0.99 1.47 131.63 8.63 0.78 0.38 0.18 0.36
gi4867 96 21 62 211 30 0.94 2.10 214.09 7.74 2.38 0.23 0.97 1.91
gi1045 108 99 50 175 44 0.93 7.60 84.57 2.49 0.98 0.20 0.26 0.44
gi2123 128 98 61 240 29 1.03 1.87 333.32 36.93 6.69 0.37 1.09 1.37
gi8056 104 4 66 223 37 1.06 5.01 221.33 7.81 3.31 0.57 1.61 2.52
gi5534 87 22 194 189 24 1.07 3.90 71.02 2.00 0.87 0.12 0.73 1.72
gi2501 123 98 151 245 23 1.00 1.50 143.26 28.74 1.53 0.49 0.22 0.38
gi223 102 6 135 219 30 1.01 4.09 87.73 1.52 0.89 0.19 1.88 2.79
gi1378 95 37 68 244 46 1.15 3.98 227.07 4.96 2.03 0.43 3.21 4.64
gi8467 115 24 67 264 46 1.30 3.33 297.07 10.62 4.23 0.57 2.48 3.87
gi7967 114 101 206 192 15 1.16 4.37 406.36 24.56 3.42 0.12 0.78 1.44
gi9123 78 4 66 325 38 1.15 213.82 212.85 17.56 1.51 0.78 1.81 2.81
gi9434 99 4 65 334 38 0.93 1.73 208.71 29.71 1.77 1.22 0.59 1.30
gi2245 110 105 132 313 30 1.08 2.25 134.36 16.68 2.01 0.26 1.16 1.94
gi8478 90 96 138 295 27 1.09 3.63 475.86 19.95 4.69 0.23 4.18 6.00
gi9334 107 14 86 341 30 1.03 2.24 162.71 30.17 4.54 1.43 1.63 2.64
gi745 107 105 91 352 38 1.10 1.95 60.29 7.10 0.99 3.89 0.34 0.54
gi1245 132 5 152 275 30 1.19 4.44 287.89 13.60 3.30 0.81 3.93 5.81
gi27910 97 100 114 369 34 1.07 59.67 131.10 15.43 1.53 1.01 0.98 1.74
gi5501 83 17 123 361 31 1.03 2.20 71.03 3.26 0.81 1.03 1.39 2.62
gi1867 86 39 91 405 47 1.08 5.22 77.95 12.20 1.99 4.64 2.07 2.95
gi4067 84 95 154 363 21 1.17 3.25 118.31 12.65 1.01 0.94 0.39 0.70
gi5856 78 10 114 324 50 1.12 5.15 182.23 6.41 2.02 0.40 5.19 8.20
gi9323 85 8 194 335 39 1.25 3.81 331.39 11.30 3.40 0.44 6.08 9.02
gi8956 102 97 162 419 26 1.25 11.72 527.65 33.91 1.26 1.99 1.79 2.84
gi8023 93 30 150 392 38 1.09 5.48 116.28 15.60 0.84 1.54 0.56 1.20
gi6889 94 98 66 522 55 1.24 3.64 4.33 10.41 5.76 6.45
gi3167 89 95 194 422 27 1.14 3.42 283.10 32.00 3.94 1.41 2.93 3.85
gi878 87 98 97 437 41 1.18 3.01 346.90 72.95 4.74 1.75 2.05 2.69
gi9189 82 27 319 362 52 1.36 7.84 395.76 14.18 3.58 3.39 6.88 10.05
gi1578 127 99 195 461 31 1.14 2.35 319.65 90.44 2.56 2.16 0.80 1.44
gi8678 83 24 261 369 28 1.24 8.08 525.14 38.13 3.69 4.99 10.32 15.92
gi7445 104 7 196 423 58 1.24 5.02 599.88 41.23 12.32 1.21 19.15 28.57
gi3934 104 96 159 623 64 1.32 4.56 613.68 142.05 5.51 2.02 5.84 8.20
gi5378 88 21 158 665 59 1.32 4.68 726.97 37.24 2.96 3.19 3.73 6.07
gi6745 98 98 150 624 65 1.35 7.20 634.56 125.36 13.92 4.53 10.29 14.84
gi4389 65 6 174 662 33 1.47 4.62 693.40 210.58 14.91 4.93 7.66 10.23
gi6278 99 8 192 588 40 1.22 17.32 491.72 183.93 13.94 3.68 6.37 9.01
gi7923 96 96 155 590 45 1.32 6.38 528.75 76.06 3.51 2.98 5.72 8.36
gi7867 118 101 211 617 59 1.51 8.89 1058.61 100.78 22.35 1.43 15.72 22.05
gi30910 104 9 190 523 49 1.22 8.45 472.29 22.97 7.81 1.21 21.71 32.06
gi4323 120 23 170 629 39 1.40 14.42 498.26 117.77 15.58 2.82 11.04 16.85
gi8745 108 105 249 632 34 1.38 8.38 610.86 156.25 20.13 3.22 13.08 20.08
gi2401 122 104 152 696 29 1.41 4.97 6.31 4.81 5.45 7.72
gi2867 102 11 154 783 38 1.46 4.74 6.41 11.81 6.53 10.06
gi4245 67 46 187 707 53 1.34 8.32 386.84 23.77 3.00 3.73 12.49 17.63
gi6134 113 105 152 748 35 1.40 8.56 437.44 109.94 3.17 13.31 4.95 7.36
gi8145 96 100 268 477 42 1.21 36.84 196.38 8.18 3.59 2.05 11.62 18.11
gi4278 95 47 251 811 20 1.30 4.93 645.57 25.87 1.75 8.60 1.08 2.09
gi7156 125 98 486 711 23 1.41 9.81 491.04 206.26 19.09 2.32 13.48 14.97
gi5145 99 96 154 1017 101 1.43 6.75 2.86 36.03 0.07 0.14

(. . . )
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name |' | |) | |* | |( | #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

(continued)
gi1067 113 56 376 716 56 1.39 9.23 255.67 22.65 7.37 4.12 22.45 33.70
gi3367 98 45 539 836 99 1.48 8.44 372.95 16.04 5.09 6.10 22.19 94.02
gi30910 104 95 361 810 78 1.62 13.50 825.29 36.13 6.77 5.40 24.78 29.16
gi1778 112 10 400 880 109 1.66 11.05 46.16 15.64 65.96 107.49
gi7267 89 98 298 1295 30 1.67 10.51 33.20 29.72 35.02 258.28
gi77910 103 97 422 2120 102 2.17 12.58 114.51 94.53 96.28 141.20
gi9912 84 103 562 1956 172 2.08 47.84 10.48 1426.66
gi2767 92 21 501 2003 78 2.02 30.48 128.21 57.11 130.51 7995.32
gi7034 102 100 454 2268 162 2.07 20.72 10.70 104.37 30.92 52.49
gi9023 144 103 1247 1980 200 2.49 24.85 142.35 41.64 258.11 799.06
gi7723 89 55 432 2745 152 2.50 28.02 79.88 218.58 157.51 405.68
gi5567 94 94 1770 6180 562 4.75 381.78 122.89 3548.58
gi467 90 61 1982 8886 383 4.61 33.59 92.65 2609.97
gi2934 106 73 2111 9168 515 5.34 33.87 92.25 2469.69

Table 12: List of instances.
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Abstract. In a flow shop, jobs are serially processed on a set of machines, and
the machine order is the same for all the jobs. In a permutation flow shop, there
is an additional assumption that the order in which jobs enter the machines is
the same on each machine. While the meaning of "permutation" is clear for a
flow shop, it is more ambiguous for a reentrant flow shop. In a reentrant flow
shop, jobs are processed on some machines more than once. Then, there are
several ways to understand the meaning of permutation. We indicate that different
researchers use the term "permutation" for different assumptions. Our effort is to
clear up this ambiguity. This is significant for definition clarity when studying the
reentrant scenario. Moreover, the various definitions influence proposed heuristics
for solving the problem and, by that, also influence the quality of the resulting
solutions. We show this through basic examples as a first step towards more
extensive experiments.

Keywords: Permutation Flow shop, Reentrant Flow Shop, Heuristics

1 Introduction

Scheduling in the manufacturing industry involves assigning jobs to machines and
determining their order to optimize some criteria [1,22]. Many manufacturing layouts
take the form of flow shops in which jobs progress from one machine to the next machine
in a serial order without ever visiting the same machine twice [22]. Flow shop problems
that do not allow sequence changes between machines are called permutation flow
shops (PFS). In this class of problems, jobs are processed by a series of machines in
precisely the same order [25]. A PFS problem is thus characterized by the same machine
order for all jobs (flow shop) and the same job order for each machine (permutation).

In classical scheduling, it is typically assumed that each job visits any given machine
at most once [1]. Contrary to that, many practical scenarios are of reentrant shops,
in which a job may be processed by some of the machines several times [9]. In some
industries, including signal processing and semiconductor wafer manufacturing, product
design may call for jobs to recirculate or revisit a stage in the manufacturing process
[24]. Reentrant shops can also be found in manufacturing facilities such as textile fabric
manufacturing processes and mirror manufacturing systems [30]. A reentrant flow
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shop (RFS) problem is distinguished from the classical flow shop problem by allowing
jobs to be processed repeatedly at some machines.

An RFS is characterized by a reentrant pattern q noting the machine order for the
jobs. Explicitly, let q8 be the 8-th stage visited by each job, where q8 2 {1, 2, . . . ,<}. The
reentrant pattern q = (q1,q2,...,q |q | ) is the sequence in which jobs visit the machines
in the shop. The reentrant property occurs when at two stages in the sequence, q8 = q 9
for 8 < 9 . In maximal generality, the reentrant pattern determined by the manufacturing
process may be arbitrary, provided all jobs follow the same sequence (i.e., flow shop)
and at least one machine is revisited. Nonetheless, there are some special reentrant
patterns that commonly appear in real-life manufacturing processes. One such pattern
is the cyclic pattern [10], also called RFS with full loops [30]. In a cyclic-reentrant flow
shop, all the jobs make ; passes (; > 1) through all the machines, and each pass goes
through all the machines in order 1, 2, . . . ,<. For ; = 2 as an example, the obtained
pattern is q = (1, 2, . . . ,<, 1, 2, . . . ,<). This work assumes a cyclic pattern for the
RFS. An example of cyclic RFS is in the assembly of electronic circuits stacked on top
of each other [10]; each time a new circuit is connected, the same set of machines is
visited. The cyclic pattern is extensively studied also because it is possible to describe
any reentrant pattern by setting the processing time on some machines in some passes
to be zero. Nevertheless, for reasons of clarity, we hereby consider non-zero processing
times in each machine at each pass, that is, a true cyclic RFS.

An RFS problem with permutation characteristics is known as a reentrant per-
mutation flow shop (RPFS) problem. The main contribution of this article regards the
notion of permutation within the RPFS context. We claim that the use of the word
"permutation" in RPFS takes on several different meanings, which naturally may create
confusion. We offer a clear way to describe the different definitions of RPFS. We do not
propose to abolish the various definitions but rather propose to address several permu-
tation types. In the proposed approach, four different types of RPFS are obtained; in the
literature, we found that researchers use three of them under the name RPFS.

The four permutation types are described in Section 2, together with a literature
review mainly concerning RPFS with a cyclic pattern. In Section 3, we show that the
different permutation types have meaning not only in terms of the clarity of represen-
tation but also from the point of view of heuristic construction. We consider Palmer’s
slope heuristic [20] for each of the four presented types and demonstrate it through
simple examples. A discussion in Section 4 concludes the paper.

2 RPFS Permutation Types

Consider an RFS problem with a cyclic reentrant pattern. It consists of = jobs, <
machines, and ; levels. A level in a cyclic pattern is a pass of a job in all the machines in the
order 1, 2, . . . ,<. A level is also called a cycle or loop. A specific level of a specific job is
also called a sub-job [8]. To show the ambiguity regarding the meaning of "permutation"
in the RPFS literature, we present the following quotes that use contradicting definitions.

Definition 1: “Every job can be decomposed into several layers each of which starts on
"1 and finishes on "<. In the RFS case, if the job ordering is the same on any machine
at each layer, then no passing is said to be allowed, since no job is allowed to pass any
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former job. The RFS scheduling problem in which no passing is allowed, is called a
RPFS problem.” — quote taken from [6].

Definition 2: “Our considered m-machine reentrant permutation flow shop scheduling
problem (MRPFSSP) can be viewed as a special kind of non reentrant flow shop schedul-
ing problem (FSSP). If each job is decomposed into ! sub-jobs and the reentrant-based
precedence constraints among all sub-jobs are satisfied, MRPFSSP can be treated as an
imaginary FSSP with =! sub-jobs.” — quote taken from [23].

The first definition is more restrictive than the second. There is a third, intermediate
definition used for general reentrant patterns.

Definition 3: “Pan and Chen (2003) developed three mixed integer models for the
reentrant flow-shop problem . . . In these models, the job sequence for every machine is
the same in each level and it is not allowed that higher levels preempt lower ones . . . Lee
et al. (2011) relaxed the constraints of level permutation set by Pan and Chen (2003) in
order to get better objective values. This relaxation makes it possible to mix job levels,
i.e., jobs on higher levels can be processed on a machine k before jobs on a lower level.”
— quote taken from [15].

Table 1 presents a summary of the literature regarding RPFS with the cyclic pattern
over the last two decades. The table shows that the definitions are used interchangeably
over the years and are all referred to as RPFS. This creates an ambiguity that we aim to
correct. It is noteworthy that:

– The majority of studies used Definition 1.
– Most studies that applied Definition 2 were related to the specific case of two-

machine problems.
– Only a few studies used Definition 3.

A key insight that can be deduced from the above definitions, is that to properly handle
the permutation characteristic in RFS problems, two issues should be considered:

1. Job passing: Is it allowed for the job order to be different at different levels?
2. Level passing: Is it allowed for level : of job 9 to be scheduled before level : 0 of

another job 9 0 where : 0 < :?

For Definition 1, the answer to both questions is negative: there is a single job order
and this order is kept in all the levels. In addition, level passing is forbidden, i.e., level
: + 1 of a job does not precede level : of a different job. We suggest to term this RPFS
type as Passing Prohibited (PP). This term has a similar meaning to the "no passing"
term used with respect to RPFS, for example, in [21,6].

For Definition 2, the answer to both questions is positive: the jobs are practically
divided into sub-jobs, and the order of sub-jobs is not restricted as long as precedence
constraints are kept, i.e., a level : + 1 of a job does not precede level : of the same job.
We suggest to term this RPFS type as Passing Allowed (PA).

For the intermediate Definition 3, the answer to the first question is negative; a
single job order is kept in all the levels. However, the answer to the second question is
positive, i.e., level passing is allowed. We suggest to term this RPFS type as Job Passing
Prohibited (JPP).
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Year Reference Permutation
definition Objective Notes

2003 [21] Definition 1, PP Makespan
2006 [3] Definition 1, PP Makespan
2007 [5] Definition 1, PP Makespan
2007 [7] Definition 2, PA Makespan Two-machine problem
2008 [6] Definition 1, PP Makespan
2008 [17] Definition 2, PA Makespan Two-machine problem
2008 [8] Definition 2, PA Makespan
2009 [4] Definition 1, PP Makespan
2013 [15] Definition 3, JPP Makespan Not specific to cyclic RFS
2014 [16] Definition 2, PA Total tardiness Two-machine problem
2014 [29] Definition 1, PP Makespan
2016 [28] Definition 1, PP Makespan
2017 [23] Definition 1, PP Makespan
2018 [27] Definition 1, PP Makespan

2021 [24] Definition 1, PP
Makespan, average
completion times,
total tardiness

Multi-objective performance measure

2023 [11] Definition 1, PP Makespan, maximum
tardiness Bi-objective performance measure

2023 [18] Definition 2, PA Value-at-risk of the
makespan

Two-machine problem, stochastic pro-
cessing times

2023 [26] Definition 3, JPP Makespan Not specific to cyclic RFS, identical
jobs

Table 1: Summary of the cyclic RPFS literature review.
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There is also a fourth definition, for which the answers to Questions 1 and 2 are
positive and negative, respectively. For this type, level passing is forbidden, but the job
order may be different at different levels. We suggest to term this RPFS type as Level
Passing Prohibited (LPP). Table 2 summarizes the four types of RPFS.

Permutation Type Job Passing (Question 1) Level Passing (Question 2)
Passing Prohibited (PP) Not Allowed Not Allowed
Level Passing Prohibited (LPP) Allowed Not Allowed
Job Passing Prohibited (JPP) Not Allowed Allowed
Passing Allowed (PA) Allowed Allowed

Table 2: Four possible permutation types in cyclic RPFS.

Example 1. An RFS problem with = = 3 jobs, < = 3 machines, ; = 2 levels, and the
following processing times:

%1 = ©≠
´
4 2 4 2 2 8
4 4 2 4 2 8
8 2 2 6 2 2

™Æ
¨

Here, each line corresponds to a job, and each column to an operation according to its
order in the flow. For example, the processing times of job 91 in machines 1, 2, and 3
are (4, 2, 4) at level ;1 and (2, 2, 8) at level ;2.

Figure 1 shows potential schedules based on the four permutation types. Different
colors represent different jobs ( 91 – red, 92 – green, and 93 – blue):

– PP type schedule with job order (2, 1, 3) at the two levels.
– LPP type schedule with job order (2, 1, 3) at the first level and (1, 2, 3) at the second

level.
– JPP type schedule with job order (2, 1, 3) for both levels, but ;2 of 92 (green) precedes
;1 of 93 (blue).

– PA type schedule with job order (2, 1, 3) at the first level and (1, 2, 3) at the second
level. In addition, ;2 of 91 (red) precedes ;1 of 93 (blue).

Figure 2 depicts a Venn diagram of the solution space of the different permutation
types. As follows from the definitions and visually presented by the Venn diagram, the
largest solution space is of the PA type with (3 · 2)!/(2!)3 = 90 possible permutations
for Example 1. The smallest solution space is of the PP type with 3! = 6 possible
permutations. The intermediate types contain (3!)2 = 36 and 5 · 3! = 30 possible
permutations for the LPP and JPP types of Example 1, respectively.

3 Heuristic Issues

A classical three-machine permutation flow shop scheduling problem with the makespan
objective is strongly NP-hard even without job reentrancy [14]. The problem �< |
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Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Order Time

PA

PP

LPP

JPP

2

2

34 38

2 6 10 14 18 22 26 30 34 38

6 10 14 18

22

26 3022

26 30 34 38

2 6 10 14 18 22 26 30 34 38

6 10 14 18

Fig. 1: Possible schedules of the four permutation types: passing prohibited (PP), level
passing prohibited (LPP), job passing prohibited (JPP), passing allowed (PA).

A44=CA0=C | ⇠max is NP-hard, even for a two-machine problem [10]. Most studies
on RFS problems thus focus on improving the computational efficiency of optimization
algorithms (e.g., branch and bound) or developing efficient heuristics and metaheuristics.
A common approach to devising a heuristic for RPFS is to adjust a (non-reentrant) flow
shop heuristic to the RFS problem. Several studies applied this methodology while
considering the PP [21] and PA [7] permutation types. The intermediate types – LPP
and JPP – were not considered in this respect.

This section aims to show the relevance of the different permutation types to heuris-
tics construction. We demonstrate this issue by examining Palmer’s slope heuristic [20]
as an initial step toward analyzing other commonly used PFS heuristics, such as CDS [2],
NEH [19], and others. Palmer’s slope heuristic has already been generalized for solving
an RFS problem with makespan objective [21]. The obtained solution is of a PP per-
mutation type. The generalization to the other permutation types is obtained by treating
the processing times of each job as the processing times of a job in a non-reentrant
flow shop (as if a machine at each level is a machine in itself). For each job, the slope
index is calculated, and the jobs are arranged in descending order of the slope. When
passing is prohibited, the job order is sufficient to determine the schedule. This simple
procedure can be naturally generalized to the other permutation types by the calculation
of slope indices for each of the sub-jobs. Treating sub-jobs is acceptable in generalizing
flow shop heuristics to the reentrant with PA permutation type [7]. The generalization
we consider here is to define an order of the sub-jobs according to their slopes, keeping
in mind the constraints each type induces:

– For the LPP permutation type, we first arrange the sub-jobs of all the jobs of the
first level according to its slope indices, from the largest to the smallest. We then
arrange the sub-jobs of the second level according to its slope. We continue this,
level after level, until the last level is reached and arranged.
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Non-Permutation

Passing Allowed

LPP JPPPP

Fig. 2: A Venn diagram of the RPFS permutation types, including non-permutation RFS.

– For the PA permutation type, we arrange all the sub-jobs according to the slope
indices while taking care of operation precedence, i.e., for each job, the sub-jobs of
that job will be arranged in ascending order of levels.

– For the JPP permutation type, we regard a combination of the two types of slope
indices. A job order is first determined according to the rule established for the PP
type (considering the job slope indices). Then, the sub-jobs are arranged according
to the sub-job indices while taking care of level precedence (like in the PA type),
i.e., ensuring that the sub-job order is maintained within each job.

Once the rule for sub-job order (described above for each of the permutation types)
is applied, a schedule is constructed by selecting each sub-job according to the order
and inserting it after the previous sub-job. Another step that is generally considered in
heuristics is that of solution improvement [13]. A standard improvement is obtained by
sub-job swaps. The described heuristic, including some swap improvements, is shown
in the following examples.

Consider Example 1 of Section 2. For this small example, following the above
heuristic steps results in only two schedules for the four permutation types. The PP-type
and LPP-type schedules are identical, with a makespan of 38. The JPP-type and the
PA-type schedules are identical, with a makespan of 50. The example shows a major
challenge in the generalization of heuristics based on the division into sub-jobs: how
to avoid, or at least reduce, cases in which sub-jobs that belong to the same job are
sequentially scheduled. In the second schedule, two such sequences greatly increase the
makespan. By applying two simple swaps to avoid these sequences, a JPP-type schedule
with a makespan of 36 can be obtained, see Figure 3.

Another challenge related to the construction of heuristics is related to tie-breaking,
as demonstrated by Example 2.
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m1
m 2
m 3

m 1
m 2
m 3

m 1
m 2
m 3

38 42 46

50

50

50

46

42 46

18 22 26 30 34

26 30 34 382 6 10 14 18

26 30 34 38 42

new 
JPP

2 6 10 14

2 6 10 14

PP & 
LPP

JPP 
& PA

18 22

22

Fig. 3: Schedules obtained by the adjusted slope heuristic. The "new JPP" schedule is
obtained from the JPP&PA schedule by two swaps: 91;2 $ 92;1 and 92;2 $ 93;1.

Example 2. An RFS problem with = = 4 jobs, < = 3 machines, ; = 3 levels, and the
following processing times:

%2 =
©≠≠≠
´

6 4 2 8 6 4 6 2 2
8 6 8 6 4 2 2 2 6
4 2 4 6 4 6 4 4 8
8 6 8 4 6 4 8 6 4

™ÆÆÆ
¨

Recall that each line corresponds to a job, and each column corresponds to an ordered
operation.

In Example 2, several sub-jobs have an identical slope index. For the LPP type, 96
different sub-job orders can be obtained depending on the rule that breaks the tie. Finding
a good tie-breaking rule is a known problem in flow shops [12] and can be significant for
the quality of the solution. Figure 4 shows two possible LPP-type schedules. There is a
tie between the schedules regarding the sub-job indices but the makespan is significantly
different.

For both Examples 1 and 2, better solutions were obtained by allowing passing.
In other scenarios, the strict PP type may be dominant. It is clear that a solution that
allows passing is always at least as good as a solution that prohibits it, and a substantial
challenge remains in finding good solutions by efficiently examining only a part of the
solution space.

4 Discussion

It is known that there are scenarios for which the optimal solution is not a permutation
schedule. This is true for �< | |⇠<0G compared to �< |?A<D |⇠<0G if < > 3 [10].
For the RFS problem, this is true even for two machines and the PA less-restricting
permutation type [7]. Nevertheless, many real-world RFS manufacturing systems prefer
to use permutation schedules because they offer greater ease of operation and control.



The Meaning of Permutation in Reentrant Permutation Flow Shop Problems 107

m 1
m 2
m 3

m 1
m 2
m 3

2 10 18 26 34 42 50 58 66 74 82 90

2 10 18 26 34 42 50 58 66 9074 82

Fig. 4: Two LPP type schedules with ties regarding the sub-job slopes ( 91 – red, 92 –
green, 93 – blue. and 94 – purple)

In some cases, only permutation schedules are feasible because of the inflexibility of
material handling systems or limited buffer space [16]. Theoreticians may prefer the
permutation version as an algorithmically simplifying assumption. The permutation
scenario was also adjusted to the reentrant case. However, the meaning of "permutation"
has had several interpretations. We suggest to clarify the definition using the four
permutation types.

Several heuristics have been proposed over the years to achieve a high-quality RPFS
solution [21,7,8,17]. The types of permutations were only partially considered in pre-
vious work on RFS heuristics. We have shown a possible approach to extend Palmer’s
slope heuristic demonstrating the potential in regarding the four permutation types, as
well as the challenges ahead. This only serves as a preview for further comprehensive
research that will involve addressing larger problems and exploring other heuristics. A
generalization of existing heuristic methods to each permutation type may provide a
flexible and efficient framework for scheduling in RFS environments.
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Abstract. This paper presents an open-source iMOPSE (Intelligent Multi-Objective
Problem Solving Environment) library for (meta)heuristic optimization for bench-
marking Multi-Skill Resource-Constrained Project Scheduling Problem consid-
ered as single-, multi-, and many-objective optimization problems. The library is
implemented in C++ and is designed to support researchers, students, and practi-
tioners. The library includes several sets of benchmark instances, implementation
of NP-hard problems, and (meta)heuristics, like Genetic Algorithm, Tabu Search,
and state-of-the-art multi-objective NSGA-II, SPEA2, or MOEA/D. Additionally,
supporting software tools are included, which are helpful in solution validation,
visualization, and research automatization. All data and provided code is freely
published as open source repository on GitHub.

Keywords: benchmark, scheduling, Multi-Skill Resource-Constrained Project
Scheduling Problem.

1 Introduction

The Multi-Skill Resource-Constrained Project Scheduling (MS-RCPSP) is a combina-
torial NP-hard scheduling problem related to real-world problems, e.g., the Software
Project Scheduling Problem in software development used in Volvo IT company. The
tasks that need to be executed are connected in a precedence graph, so the MS-RCPSP
problem is overconstrained. Moreover, in MS-RCPSP, the RCPSP problem is extended
by resource (human) skills at various levels, introducing additional domain constraints,
making the problem more difficult to solve but flexible in management. The MS-RCPSP
problem benchmark was originally defined [1][2] and could be considered a single-
and many-objective optimization problem. MS-RCPSP problem is commonly used and
cited (e.g., surveys [13][14][20]) – according to GoogleScholar nearly 80 scientific pa-
pers (years 2015-2024) reference or use MS-RCPSP iMOPSE dataset. Additionally, 13
papers that define the MS-RCPSP problem (and solving methods) are cited 605 times.

Initially, the MS-RCPSP problem was defined as a single-objective optimization
problem and presented in [4], where a hybrid of Ant Colony Optimisation (HantCo)
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and the greedy algorithm was proposed. The greedy Randomized Adaptive Search
Procedure (GRASP) method gained a solution about 15.8% more efficient than HantCo
[6]. The above methods solve MS-RCPSP as a single objective using project duration
time Makespan as the only objective function. Additionally, some of the papers explore
the effect of autonomous team role selection in flexible projects and investigate synergies
between employees using the iMOPSE dataset [19]. Hybridized Differential Evolution
and Greedy (DEGR)[7] can also be used to solve MS-RCPSP, and like all the above
methods, is based on a greedy algorithm (Schedule Generator Scheme) to get feasible
solutions. Additionally, the extra research presented in [8] presents the influence of how
coevolution and solution representation could be effective in solving MS-RCPSP.

The MS-RCPSP can also be solved considering two objectives: project total Cost and
duration (Makespan). In this context, bi-objective optimization in MS-RCPSP should
be applied – in [9] results of Non-dominated Sorting Genetic Algorithm (NSGA-II) are
presented. However, classical NSGA-II has some limitations, and the new NTGA (Non-
dominated Tournament Genetic Algorithm)[10] method has been proposed – NTGA
focuses on the diversity of the population, what makes it more effective in solving bi-
objective MS-RCPSP. Next, the NTGA2 [11] method has been proposed, which extends
the NTGA by GAP selection method and extra mechanism to manage the archive
actively. It makes NTGA2 a robust and effective method of multi- and many-objective
optimization in solving MS-RCPSP.

To compare the results of NTGA2, NTGA, and classical NSGA-II with other meth-
ods, a survey of quality that could be applied directly to MS-RCPSP has been published
[12]. A set of complementary measures has been proposed – dedicated and verified in
application to MS-RCPSP. In work [11] NTGA2 is investigated in solving MS-RCPSP
with 5 objectives and compared to state-of-the-art many-objective methods (e.g. U-
NSGA-III or Theta-DEA). Recently, the new balanced B-NTGA [18] method has been
published – it actively balances the exploitation/exploration in the solution landscape –
it dominates the results of other state-of-the-art methods in multi- and many-objective
MS-RCPSP.

There are several methods presented in the literature that use iMOPSE MS-RCPSP
dataset [2] as a benchmark – they could divided by optimization types: single objective
(1 objective), bi–objective (or multi-), and many–objectives (5 objectives). Methods are
based on various metaheuristics, like Differential Evolution [7], Ant Colony Optimisa-
tion [4], Fruit Fly Optimisation [15] or Teaching-Learning Optimisation [16]. Moreover,
hyperheuristics like Genetic Programming Hyper-heuristic [17] are used. Several meth-
ods solve MS-RCPSP as a bi-objective problem (e.g., fruit fly MOFOA [21], genetic
program. hyper-heuristic MOGP-HH-D [22], NTGA). However, to our best knowledge,
only two methods solve MS-RCPSP with 5 objectives: NTGA2 [11] and B-NTGA [18].

The main contribution of this paper is (1) to summarise and extend the MS-RCPSP
research: all benchmark data [1][2][3] to define a standard set of instances, (2) to
provide iMOPSE open-source and publish code for state-of-the-art solving MS-RCPSP
methods to make method comparison more accessible, and to develop a (3) software
tools specialized for MS-RCPSP, like validators or visualizers.

The rest of the article is structured as follows. The definition of MS–RCPSP problem
is given in section 2. The MS-RCPSP instances for the investigations are presented in
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section 3. Section 4 contains the description of iMOPSE and concludes with a case
study showcasing an example of an experiment workflow. The last section (5) concludes
the work and highlights potential directions for further research.

2 Multi-Skill Resource-Constrained Project Scheduling Problem

The MS-RCPSP is a combinatorial NP-hard problem within the domain of scheduling
problems based on model used in Volvo IT company. The discussed problem comprises
two interconnected sub-problems: task sequencing, which involves placing tasks on a
timeline, and resource assignments. MS-RCPSP is defined by a list of tasks and resources
where each task requires a resource with a specified skill level to be executed. The goal
is to find a optimal and a feasible schedule %(, meaning a solution that satisfies all
constraints.

Each resource is linked to a corresponding salary, adhering to the constraint defined
in Eq. 1, ensuring that for each resource A, no salary (AB0;0A H) value can assume a
negative value. Additionally, it dictates that each resource must be associated with a
non-empty set of skills, as resources and tasks are linked to specific skill sets.

8A2'AB0;0A H � 0,8A2'(A < ; (1)

where (A is the set of skills possessed by resource A 2 '.
The duration and finish time of each task cannot be negative (see in Eq. 2.)

8C2)�C � 0;8C2)3C � 0 (2)

where �C denotes the finish time, and 3C represents the duration of task C.
Eq. 3 introduces constraints related to task precedence, stating that a task can only start
after all its predecessors are completed.

8C2) ,?2C?�?  �C � 3C (3)

where C? denotes the predecessors of task C.
Eq. 4 addresses the skill requirements in MS-RCPSP, ensuring a resource allocated to a
task possesses the requisite skill at an appropriate level.

8C2)A 9BA 2(A ⌘BC = ⌘BA ^ ;BC  ;BA (4)

where )A is a set of tasks assigned to a resource A , BC is the skill required by the task
C, (A is the set of skills possessed by the resource A , ⌘ and ; are the type and level of the
skill respectively.
A constraint ensuring at most one resource is assigned to any task at any given time is
presented in Eq. 5.

8A2'8C2g
=’
8=1
*
C

8,A
 1 (5)

where g is the time domain, = represents the total number of tasks, and *C
8,A

is a
binary variable, equal to 1 if resource A is assigned to task 8 at time C.
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The final constraint (see Eq. 6) ensures that all tasks must be finished by ensuring that
all tasks have a resource assigned at some time slot.

882)9C2g,A2'*C8,A = 1 (6)

where g and*C
8,A

are defined as in Eq. 5.

2.1 objectives in MS-RCPSP

The MS-RCPSP can be defined as single- multi- and ultimately as a many-objective
optimization framework, accommodating up to five objectives [3].

The optimal schedule is the one with the minimal objective function – for multi-
objective optimization, an approximation of Pareto Front is investigated. The feasible
schedule satisfies all constraints related to tasks, resources, skills, and precedence rela-
tions. Formally, the MS–RCPSP optimization problem can be defined as follows:

5 : ⌦! R,<8=( 5 ) (7)

where⌦ is the feasible schedule space, while the 5 is the given objective function(s).
In many-objective MS–RCPSP there are five defined objectives as follows:

– the project schedule duration (makespan) – 5g (see Eq. 8),
– schedule’s cost – 5⇠ (see Eq.9),
– skill overuse – 5( (see Eq.10),
– and average use of resources – 5' (see Eq.11).
– average cash flow – ( 5�) (see Eq.12),

The two most commonly described objectives in literature consist of schedule Makespan
(or Duration) and total Cost. Additional MS-RCPSP objective aims to describe a specific
schedule aspect: Average Cash Flow, Skill Overuse, and the Average Use of Resources.
The MS-RSPSP optimization objectives are defined below.

The Makespan fg (PS) of the project schedule %( is given as Eq.8.

5g (%() = max
C2)

C 5 8=8B⌘ (8)

where ) is a set of all tasks, C 5 8=8B⌘ is the finish time of the task C. The Cost of the
schedule is fC (PS) defined as Eq.9.

5⇠ (%() =
=’
8=1

'
B0;0A H

8
⇤ )3DA0C8>=

8
(9)

where = is the number of all task-resource assignments, 'B0;0A H
8

is the salary of
a resource of the 8-th assignment, )3DA0C8>=

8
is the duration of the task of the 8-th

assignment.
Skill Overuse aims to minimize the difference between the skill level of a resource

and the required skill. Skill Overuse fS (PS) – see Eq.10) – ensure that the resources
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assigned to the task are not overqualified, which could be essential in the practical
applications.

5( (%() =
=’
8=1

'
;

B
� ) ;

B
(10)

where = is the number of task-resource assignments, ';
B

is the skill level of a resource
', and ) ;

B
is the skill level required for the task ) .

Some resources are assigned to the project - and must receive a salary, even if they
are not assigned to any task. The Average Use of Resources (see Eq. 11) objective gives
the distribution of tasks and ensures the efficient use of resources. It aims to minimize
the deviation of the number of task-resource assignments.

5' (%() =
1
A

A’
8=1

('=
8
� '=

0E6
) (11)

where A is the number of resources, '=
8

is the number of tasks assigned to the 8-th
resource, '=

0E6
is the expected average number of assignments.

The Average Cash Flow fF (PS) (see Eq. 12) measures the deviation of costs over
the entire duration of the project and allows for more effective budget management.

5� (%() =
1

5g (%()

5g’
C=1

(⇠C � ⇠0E6) (12)

where ⇠C is the cost of the project in a single time slot C, 5g (%() is the makespan of the
project, ⇠0E6 is the average cost of the project in a time unit and can be defined by the
Eq.13.

⇠0E6 =
⇠

5g

(13)

where ⇠ and 5g are the total 2>BC and <0:4B?0= of the project respectively.

Although the MS-RCPSP, in its nature is multi-objective, but could also be consid-
ered in a simplified version as single-objective MS-RCPSP[7], where the evaluation
function is formulated as follows:

min 5 (%() = Fg 5g (%() + (1 � Fg) 52 (%() (14)

where: Fg – weight of duration component, where 5g (%() and 5⇠ (%() is normalised
and Fg 2 [0; 1].

The above five objectives ( 5g , 5⇠ , 5( , 5', 5�) are already implemented in iMOPSE
library for MS-RCPSP, but there are no limits and this set could be redefined as iMOPSE
is opensource.

3 MS-RCPSP instances

The provided dataset emerged during a research cycle and was gradually expanded
to accommodate the needs. It consists of 265 unique test instances prepared using
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the iMOPSE generator with different parameters to show the influence of constraints
(e.g., introducing extremely low and high values for precedence relations or no skill
requirements), as well as the task and resource quantity.

All instances are defined using the coherent format and follow the naming conven-
tion, encoded as <task count>_<resource count>_<precedence relation count>_<skill
count>_<postfix>. For example, 200_10_84_9 consists of 200 tasks with 84 precedence
relations and 10 resources with up to 9 unique skills. The <postfix> at the end is optional
and can be used for marking specific variations of the instance. With that said, instance
names should not be decoded to access the exact values, as those are nominal values, and
slight deviations can be found in the data. Therefore, the exact quantities are included
inside the instance definition.

All instances are located within iMOPSE directory configurations/problems/MSR-
CPSP/all and have been divided into the following groups:

– Small (6) - small toy-size instances with 10-15 tasks and 3-9 resources; good for
validation and visualization as optimal solutions are easy to find

– Regular (36) - regular instances with 100/200 tasks, and 5-40 resources, with
varying numbers of skills and relatively small numbers of constraints; instances
with postfix ’D’ come from the real-world scenarios and might be considered more
difficult due to bottlenecks and project milestones; the other instances are generated
to imitate the same characteristics

– RegularGenerated (128) - regular randomly generated instances with 100/200
tasks, 5-40 resources, 5/10 skills, and varying numbers of constraints; generated to
increase the standard instances set providing more combinations to investigate the
impact of task, resource, skill, and precedence relation number

– Dense (7) - randomly generated instances with 100 tasks, 10-40 resources, 9/15
skills, and a high density of precedence relations

– NoConstr (8) - randomly generated instances with 100/200/500/1000 tasks, 20/40
resources, and no constraints (every resource-task connection is valid; no precedence
relations)

– Big (80) - randomly generated instances with 500/1000 tasks, 10 - 40 resources,
5/10 skills, and varying numbers of constraints

4 iMOPSE library – a general idea

iMOPSE is an advanced, open-source C++ toolkit designed for solving NP-hard prob-
lems through a suite of optimization algorithms. Tailored for academic research and
practical applications, iMOPSE streamlines the process of addressing complex opti-
mization tasks. The library’s modular architecture allows easy extensibility in method
and problem implementation (Fig. 1). This section provides an in-depth exploration
of iMOPSE capabilities that support research related to the MS-RCPSP problem and
methods for solving it.

The iMOPSE library includes several evolutionary-based state-of-the-art multi-
objective methods, such as NSGA-II [23], Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) [24], Strength Pareto Evolutionary Algorithm
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Fig. 1: iMOPSE library – a general schema

(SPEA2) [25], NTGA2 [11] and experimental balanced B-NTGA [18]. Additionally,
iMOPSE offers a set of algorithms for single-objective optimization, including Ge-
netic Algorithms (GA), Differential Evolution (DE), Ant Colony Optimization (ACO),
Tabu Search (TS), Simulated Annealing (SA), and Particle Swarm Optimization (PSO),
therefore providing a set of ready-to-use methods that can be easily extended.
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The above methods are known as effective in solving multi-objective NP-hard prob-
lems with constraints, such as MS-RCPSP [3] and Traveling Thief Problem (TTP).
Beyond MS-RCPSP, iMOPSE is capable of handling various classical NP-hard prob-
lems, such as the Traveling Salesman Problem (TSP), TTP, and Capacitated Vehicle
Routing Problem (cVRP).

Each metaheuristic to search solution space needs a solution representation and
defined genetic operators (or neighborhoods). The following two sections describe that.

4.1 representation for MS-RCPSP

For metaheuristics, to enable an effective search in the solution space, a representation
(solution) should be specialized to a given problem. The iMOPSE library supports three
types of representation (permutation, binary, and real-coded), which enable coding NP-
hard problems as combinatorial (for example TSP) or priority-based in MS-RCPSP
resource assignment (see Fig. 2).

Fig. 2: An example of two types of representation for MS-RCPSP

In the iMOPSE framework, two distinct genotype encodings for the MS-RCPSP
are implemented. The first encoding utilizes a vector of task-to-resource associations,
wherein each vector element represents a unique resource identifier, and the element’s
index corresponds to the task identifier. The second encoding adopts a permutation-
based approach, wherein the vector describes the sequence of tasks, with each element
denoting a task identifier. A dedicated schedule builder uses both encoding methods to
construct valid solutions from the genotypes. For the association-based approach, the
schedule builder assigns resources by iterating through the genotype vector, assigning
the 8-th task to the resource indicated by the 8-th value in the genotype vector. On the
other hand, the permutation-based approach iterates through the sequence of tasks de-
scribed by the genotype and assigns each task to the resource that will be available in
the shortest time. In both scenarios, the greedy schedule builder takes precedence re-
lations into account and automatically adjusts the schedule to ensure validity (see Fig. 2).

Not all solutions can be regarded as feasible schedules, as certain constraints might
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remain unsatisfied. Each investigated method presented in the following sections, capa-
ble of acquiring feasible schedule uses a greedy–based algorithm as Schedule Builder
(i.e.[7][11]) to construct a feasible solution.

4.2 Genetic operators and neighborhoods

Each metaheuristic utilizes operators to explore the solution landscape effectively. In
iMOPSE, there are several implemented operators: neighborhood operators (for TS
or SA), mutations (like RandomBit, ReverseFlip, GaussMutation), or crossovers (e.g.,
Ordering Crossover OX, Cycle Crossover CX). Each operator is designed to work with
specific encoding types; therefore, users must ensure they are using the correct operator
for their chosen encoding method.

To direct metaheuristic in a global search, especially for evolutionary computation,
selection operators also are needed – random (semi-blind, without selection pressure, as
reference), classic tournament or gapSelection [11] for multi-objective optimization. It is
worth mentioning that a predefined set of representations, operators, and selections can
be easily extended as the iMOPSE library C++ interfaces are given for implementation.

Although the operator architecture in the proposed system already includes specific
operations common across various methods, it’s entirely feasible to write the entire code
for a method within a single class. Nevertheless, we recommend enhancing and building
upon the existing operator’s architecture or extending it when developing new methods.
This approach facilitates more robust and flexible method implementation.

4.3 An additional tools (utils)

The iMOPSE library is equipped with utils that support computation and provide re-
searchers with ready-to-use tools for automation, analysis, and visualization. In this
subsection, we describe the most relevant utils tools present in the discussed library (see
Fig. 1).

iMOPSE main framework utilizes ExperimentUtils and ExperimentLogger to sup-
port the process of collecting and saving data from experiments, enhancing data manage-
ment. Additionally, ArchiveUtils aids in archive operations for multi-objective methods.
For sorting and decomposing optimization problems, Non-dominated sorting is utilized
by NSGAII and NTGA2.

External utils – Python scripts The C++ programming language is known as very
effective in computation; however, for data analysis and visualization, more useful is
Pyton. That’s why, in the iMOPSE library, several external tools have been added. Our
collection of Python scripts is crafted to augment scientific research, each designed
for a specific use case and supplemented with descriptive comments for ease of use.
automated_experiments.py automates the concurrent execution of iMOPSE, offering a
robust solution for efficient experimenting. This solution allows researchers to focus
more on analysis and less on the operational aspects of their experiments. Furthering
our support for scientific analysis of methods, msrcpsp_solution_visualizer.py validates
the given MS-RCPSP solution against constraints and visualizes it, highlighting broken
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constraints and discrepancies (see Fig. 3). This not only aids in improving the under-
standing of complex optimization solutions but also in refining and enhancing these
methods through iterative feedback.

Fig. 3: Example of (invalid) visualized MS-RCPSP solution for instance 15_9_12_9

For researchers working on multi-objective optimization, multi-objective_visualizer.py
offers visualization of PFA to elucidate the trade-offs between competing objectives.
Meanwhile, single-objective_visualizer.py provides a graphical overview of the best,
worst, and mean fitness values throughout an experiment, enriching the analysis of
optimization processes.

Together, these scripts furnish researchers with tools for conducting experiments
that are not only more efficient and insightful but also more impactful, thereby enriching
the quality and depth of scientific investigations. These scripts serve as rapid, flexible
solutions and are planned to be integrated with the main C++ codebase in the future, en-
hancing the robustness and scalability of the software for broader scientific applications
and research.

Pareto Analyzer tool In multi- and many-objective optimization, the output of each
method is a set of non-dominated points.A point is dominated if any other point has at
least one better (lower, considering the MS-RCPSP) objective value and no worse ob-
jective value. All quality measures (QMs) used for multi-objective MS-RCPSP solution
are calculated based on the returned set, called Pareto Front Approximation (PFA). The
true Pareto Front (TPF) could be defined as a set of all non-dominated solutions and
can be considered the best available PFA. However, in practical real-world problems,
TPF is usually unknown. NadirPoint is a point with the worst possible values for all
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objectives. For the MS-RCPSP, the worst value of makespan is the total sum of all tasks’
duration - all tasks are serial. The worst cost value is the cost of schedule, where the most
expensive resource performs all tasks. Worst skill overuse is achieved by assigning tasks
to the resources with the highest required skill level. The worst average use of resources
is the maximum makespan multiplied by the number of resources - 1 and divided by
the number of resources. The worst value of the average cash flow is the same as the
maximum cost.

Commonly used QMs are [12]: HyperVolume (HV), Inverted Generative Distance
(IGD) and Purity. All the QMs implemented in the Pareto Analyzer are described below.

HyperVolume " (HV) quantifies the volume of the objective space dominated by a
set of solutions. It reflects the spread and coverage of a PF. The higher the hypervolume,
the more comprehensive coverage of the objective space. It can be formally defined by
Eq. 15.

�+ (%�) = ⇤(
ÿ
B2%�

{B0 |B � B0 � B=038A }) (15)

where %� is an approximation of PF, B is the point of approximated PF, B=038A is a
#038A%>8=C, ⇤ is a Lebesgue measure, which is the generalization of a volume, � is a
domination relation.

Inverted Generative Distance # (IGD) captures both convergence and diversity. It
is an average distance from each TPF point to the closest point in PF as presented in
Eq.16, where 38 is the Euclidean distance for the 8-th point. Lower IGD values signify
that solutions are closer to the ideal Pareto front. As objectives vary in scale, using
absolute values for IGD calculation might favor certain objectives. For that reason,
points in PF are normalized beforehand, using minimum and maximum values from the
TPF.

�⌧⇡ (%�,)%�) =

qÕ |)%� |
8=1 3

2
8

|)%� | (16)

IGD is a relative metric that uses TPF as a reference point. As the real TPF is
unknown, it is constructed using results generated by all runs of all compared methods.

Purity " defined as in Eq.17, where #⇡ is the number of solutions (aggregated
from all runs) not dominated by the “True Pareto Front approximation" (TPFa), where
TPFa is constructed by merging a PFa from each method and removing dominated
solutions. %DA8CH calculated for a single method returns the value from 0 to 1 and could
be interpreted as the part of TPFa that the given method resulted in. However, the same
points (solutions) can be found by different methods. Therefore the sum of %DA8CH for
all investigated methods could exceed the value of 1.

%DA8CH(%�,)%�) = |#⇡ (%�,)%�) |
|)%� | (17)

As each method is evaluated multiple times, the Analyzer repeats the process: merges
the results returned by all the methods in the =’-th run, and calculates the %DA8CH per
run. At the end, it averages the final %DA8CH value.
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A crucial requirement for running the Analyzer is specifying the path to a config-
uration file as well as the instance name as a mandatory parameters. Configuration file
must be prepared in advance and should list paths to the experiment output directory
on separate lines. This structured format enables the Analyzer to systematically process
and analyze the outcomes for each method listed for a specified instance, ensuring a
thorough and organized evaluation process.

iMOPSE supports experiment reproducibility through the usage of seed parameters.
The first experiment is conducted under a seed provided by the user, and for each next
experiment, the seed is achieved by adding one to the initial seed value.

4.4 Case study - performing experiments with iMOPSE

In this section, we introduce an example experiment that users can conduct using
iMOPSE, designed to demonstrate its capabilities and help users become acquainted
with its operational workflow.
For the case study, we have selected the NSGAII and NTGA2 multi-objective opti-
mization methods to find PFAs for the 200_10_135_9_D6 MS-RCPSP instance. For
each method, the experiment will be repeated ten times. Thanks to iMOPSE being
outfitted with pre-loaded instances and pre-configured methods, conducting experi-
ments is straightforward. To examine two methods, users can execute the iMOPSE
program twice by inputting different parameters (see Fig. 4), or they can utilize the
automated_experiments.py script, which requires the path to the executable and in this
case, two sets of previously mentioned input parameters to run the experiments.

Fig. 4: iMOPSE input parameters for running NTGA2 and NSGAII

iMOPSE is designed to store the results of each run in a specified output directory. If
the directory does not exist, it will automatically create one. Should the output directory
already contain data from previous experiments, iMOPSE will halt its operation and
notify the user, preventing any loss or accidental overwriting of experiment data due to
an incorrect output directory path being provided.
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The generated output data can subsequently be analyzed with the aid of additional
Python scripts and the Pareto Analyzer. Nonetheless, users have the flexibility to employ
alternative analysis software or methods according to their preferences.

Fig. 5: PFAs comparison for NTGA2 and NSGAII (200_10_135_9_D6 MS-RCPSP)

In the context of our case study, we will utilize the Pareto Analyzer to compute
metrics and generate a TPF approximation, which will be saved in the same output
directory. To run the Pareto Analyzer, the user has to provide a path to the configuration
file and the name of the examined instance, in this case, the configuration file contains
paths to the output directories of analyzed methods. Pareto Analyzer merges results
for each method and calculates TPF approximation by taking non-dominated solutions
from all methods as reference. QMs acquired by Pareto Analyzer in this case study:
NSGAII - �+ = 0.56 ± 0.05, �⌧⇡ = 0.02 ± 0.003, %DA8CH = 0.1 and for NTGA2 -
�+ = 0.76±0.01, �⌧⇡ = 0.002±0.0007, %DA8CH = 0.9. The results show that NTGA2
generates approximately 90% of PFA and strongly dominates NSGA-II. Moreover, the
PFAs can be visualized and compared by employing the multi-objective_visualizer.py
script, facilitating a visual comparison of the multi-objective optimization outcomes
(see Fig. 5).

5 Summary and future work

This article proposes a new open-source iMOPSE C++ library to support MS-RCPSP
researchers, students, and practitioners. The iMOPSE library consists of methods for
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solving single- and multi-objective NP-hard combinatorial problems, especially for
MS-RCPSP. Additionally, tools are added to validate and visualize MS-RCPSP results.
However, the iMOPSE schema is flexible and could be extended easily by adding new
methods and/or problems. Thus, the code of iMOPSE is open-source and published
on GitHub [5]. The future directions of iMOPSE library development could be con-
nected to support parallel computation. A multi-thread computation and a GPU-based
computation of metaheuristics should be considered to speed up computations.
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Abstract. This paper addresses the multi-activity multi-day shift scheduling
problem with a homogeneous workforce and quadratic cost function for over-
staffing. The objective of this problem is to assign shifts to employees and ac-
tivities within these shifts based on short time intervals, respecting numerous
hard constraints and minimizing overstaffing. We propose a multi-neighborhood
Simulated Annealing algorithm as a solution method, for which we introduce
eight neighborhood relations. The search space and neighborhood relations are
designed so that the search algorithm can be executed efficiently even on large
problem instances. The method is evaluated on a benchmark dataset consisting of
problem instances with varying complexity. The results show that our approach
can handle even the most complex tasks and is able to find feasible solutions
for 201 out of the 225 total problem instances, of which 99 were previously un-
solved. Our method outperforms the solver that produced the previous best known
solutions for the benchmark dataset and finds new best solutions for 190 of the
instances. The algorithm can create good schedules in a matter of a few seconds,
using limited computing resources.

Keywords: Shift Scheduling, Multi-Activity, Simulated Annealing

1 Introduction

The multi-activity shift scheduling problem occurs in many industries, particularly
in the service sector, commonly in retail environments. Making effective use of the
workforce while satisfying various organizational and social constraints is an important
task that could yield substantial cost savings. In these problems, an activity represents
an interruptible operation, which can be assigned to several employees at the same time.
There is a minimum required workforce for the activities at each period, to ensure an
acceptable service quality. This demand may fluctuate throughout the planning horizon.

Personnel scheduling has been a widely studied problem in the literature for a long
time, as shown by the numerous references given in the surveys of Ernst et al. [1, 2]. On
the other hand, multi-activity shift scheduling problems were relatively under-studied
until recently. One of the earliest works addressing this problem was by Loucks and
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Jacobs [3]. Since then, different versions of the problem emerged with vastly different
constraints, and various solving methods have been employed for solving these. Some
works consider anonymous shifts, where it is not specified which employee will be
assigned to a given shift. Dahmen, Rekik and Soumis [4] proposed an implicit model for
this task. Other works address a variation of the problem in which interruptible activities
and uninterruptible tasks should be scheduled at the same time. Lequy, Desaulniers and
Solomon [5] used a two-stage heuristic for this problem. Solving shift construction and
activity assignment simultaneously on a multi-day planning horizon is a challenging
task, which to the best of our knowledge, has been addressed only by a few papers.
The qualification to perform certain activities can also differ within the workforce in
some problems, such as in the work of Dahmen and Rekik [6], where they proposed a
hybrid heuristic for solving a multi-activity multi-day shift scheduling problem with a
heterogenous workforce. Most recently a mathematical programming-based approach
has been used for variants of multi-activity shift scheduling problems with anonymous
shifts by Römer [7], who proposed block-based state-expanded network models.

This paper addresses the multi-activity shift scheduling problem with a homogeneous
workforce in a multi-day environment as described in the formal description [8] of the
associated benchmark problem [9]. The task is to assign shifts to employees on the
given days, and to schedule the shifts and the activities within them, based on short time
intervals, in a way that respects all the various hard constraints. The cost function in this
problem is the quadratic penalization for overstaffing at each period for every activity.
There is one existing work addressing this exact problem, by Qu and Curtois [10], in
which they use Variable Neighborhood Search as a solution method.

We propose a multi-neighborhood Simulated Annealing approach for this problem.
Simulated Annealing was first introduced by Kirkpatrick, Gelatt and Vecchi [11], and
since then it has been successfully applied for many scheduling tasks in the literature,
such as for sports timetabling [12], nurse rostering [13], course timetabling [14, 15] and
most recently examination timetabling [16]. Our proposed approach for the multi-activity
multi-day shift scheduling problem is based on a mathematical model which enables
the efficient inspection of the various hard and soft constraints, and our introduced eight
different neighborhood relations allow for an effective traversal of the state space.

The organization of this paper is as follows. Section 2 overviews the multi-activity
multi-day shift scheduling problem addressed in this paper. Section 3 describes the
proposed local search method and the proposed neighborhood relations in detail. In
Section 4, we report and discuss the experimental results obtained on the benchmark
dataset. Section 5 provides concluding remarks and future plans.

2 Problem Definition

This paper addresses the Multi-Activity Multi-Day Shift Scheduling Problem, as de-
scribed in the formal description [8]. The mathematical model of the problem with
the formalization of the exact hard and soft constraints are available in the formal de-
scription. For clarity, we briefly summarize the key aspects of the problem. The goal
is to assign shifts to employees on the given days, and activities within these shifts.
An employee can work on one or more tasks during a shift, therefore activities should
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be scheduled within the shifts, each with an assigned task. In this context, activities
and tasks are considered equivalent. Therefore, when we refer to an activity, we are
indicating the duration during which an employee works on one of the specified tasks.
An employee must work on exactly one task at each interval of a shift, which means
that there can be no overlap between the different activities. Employees are assumed to
be homogeneous in the sense that they are all qualified to perform any of the different
tasks. The planning horizon is divided into 15-minute intervals and the scheduling has
to be done based on these time slots. The planning horizon always starts at 6:00 a.m. on
the first day and finishes at 6:00 a.m. on the last day. Therefore, if the planning horizon
is 7 days long, then it runs from 6:00 a.m. on day 1 to 6:00 a.m. on day 8.

There are various hard constraints for the problem, all of which must be respected
for a schedule to be considered feasible. An employee cannot start more than one shift
on a day, and a shift can only start at one of the time intervals between the following
times on each day: 0:00-0:00, 6:00-10:00, 14:00-18:00 and 20:00-23:45. Each shift
duration should be between 6 and 10 hours. After a shift finishes, an employee cannot
start another shift until at least 14 hours later. An employee cannot start shifts on more
than 5 consecutive days, in other words at least one day off must be taken on each 6
consecutive days. There are no limitations on the number of activities a shift can hold
or on the number of activity changes within a shift, however, every activity must be at
least 1 hour long before an activity change occurs or the shift ends.

In the different problem instances, it is specified for each employee how many total
minutes that employee should work at minimum and at maximum during the whole
planning horizon. The minimum cover requirement is also specified for each task at
each time interval, which is the minimum number of required staff to work on that task
at that interval.

The objective is to minimize assigning more staff than the maximum specified for
each task at each time interval. When there is overstaffing for a given task at a specific
interval, the penalty is the squared difference between the maximum required number
of staff and the actual number of staff. The total cost of a solution is the sum of all the
penalties for every time interval and task. Thus, the cost function is quadratic to ensure
that overstaffing is spread out over the planning horizon rather than occurring in a small
number of tasks and intervals, as the penalty for each additional unit of overstaffing for
a task at an interval increases more rapidly than linearly.

3 Solution Method

Our solution method is based on the Simulated Annealing [11] local search, for which
we designed a multi-neighborhood consisting of eight different neighborhoods. The key
components of the proposed method are described in this section.

3.1 Search Space

A state in the search space is the direct representation of all the shifts and activities
assigned to each employee, with their respective schedules based on the time intervals
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Table 1: Decision variables

Symbol Definition

B
⌘,4
2 {0, . . . , |� | ⇤ |⇢ | � 1} Shift index of employee e on the ⌘-th 24-hour period of the

planning horizon. |� | is the total number of 24-hour periods and
|⇢ | is the total number of employees in the given problem
instance.

1B 2 Z+ Start time of shift B.
0B 2 {0, . . . , =} Activity count of shift B. The maximum number of activities per

shift (n) is a selectable parameter.
;B,0 2 Z+ Length of the a-th activity of shift s.
CB,0 2 {0, . . . , |) |} Task of the a-th activity of shift s. |) | is the total number of tasks

in the given problem instance.
Auxiliary variables
F4 2 Z+ Workload of employee e.
2C ,8 2 Z+ Cover of task C at time interval i.
5
3,4
2 {0, 1, 2} Count of non-empty shifts of employee e on day d.

of the planning horizon. The decision variables of our model with their descriptions are
shown in Table 1.

Although there are demand requirements for each time interval of the planning
horizon, we do not directly model the assignment of employees at each interval, as
this would imply an unnecessarily large model for our approach, because only the sum
of the workforce is relevant at each interval. Rather, we use variables to specify which
workers are assigned to which shifts at the given 24-hour periods, when these shifts start,
how many activities the shifts contain, how long these activities are, and which tasks
are assigned to them. Given these variables, a complete schedule can be composed,
and all the different constraints can be inspected. To enable the efficient inspection
of the various constraints, different auxiliary variables can be introduced, offering the
necessary aggregated information directly. Our key auxiliary variables are presented in
Table 1.

In our model, each employee must have one shift assigned to them at each 24-hour
period, but a shift can be empty meaning that it should be ignored from the complete
schedule and the relevant employee does not start a working shift at that period. A shift
must start at one of the time intervals of the relevant 24-hour period, but it can extend
beyond that period. We base our shifts on 24-hour periods of the planning horizon rather
than on days, because this way fewer variables are needed for modeling the shifts, and
all the shifts can be handled uniformly. If shifts were created for each day, then the start
and the end of the planning horizon would cut into the shifts on the first and the last day
respectively, making allocation to time intervals completely different on those days. The
first 24-hour period starts at the beginning of the planning horizon, which is at 6:00 a.m.
on the first day, and ends on the next day at 6:00 a.m. The number of 24-hour periods is
one less than the number of days in a problem instance.
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The problem constraints can be reformulated for our decision variables with a
straightforward matching between them. The only difficulty emerges because a shift
can start at 0:00 on a given day, which time interval is part of the 24-hour period of
the previous day. Thus, two shifts could start on the same day, which is a constraint
violation. In order to restrict this, we modified the length of the minimum rest time to 24
hours for a shift starting at 0:00. The auxiliary variables for the number of non-empty
shifts of each employee on each day are created to help the inspection of the constraint
on the number of consecutive working shifts. An example of two shifts of an employee
starting on the same day would be that the first shift starts at 0:00 and the second one
starts at 20:00. In that case the corresponding “fd,e” value would be 2, indicating that
two shifts start on that day for the employee.

To make the search space more connected, certain hard constraints are relaxed and
made soft constraints, but with high weights applied to the cost for violating them. Thus,
the cost function of a state in the search space is the sum of the cost induced by the soft
and the hard constraints. The actual weights of the hard constraints are set by parameters
associated with them. The workload constraints, the minimum cover constraint, the
maximum number of consecutive shifts constraint, the minimum rest time constraint,
and the constraints regarding the length of shifts and activities are relaxed. Linear cost
functions are used, except for the minimum and maximum shift length constraints, for
which the deviation from the minimum and maximum length is penalized quadratically.

A parameter can be set to control the maximum number of activities per shift. The
variables associated with the activities are created based on this parameter, for each shift
as many as the parameter specifies. Based on the maximum shift length and minimum
activity length hard constraints, at maximum 10 activities per shift are needed to create
any feasible solution. A higher value can be set for this parameter if we want the search
algorithm to move more freely in the search space by adding more activities, but the
problem constraints need to be modified in this case. A value lower than 10 can speed up
the search for problem instances with few tasks, although finding the optimal solution
might become theoretically impossible.

The activity count variable specifies how many activities are actually relevant from
all the activities of a shift. When the activity count of a shift is lower than the maximum
number of activities per shift, that means that the following activities are empty, and
their tasks and lengths should be ignored. A shift is empty when its activity count is
zero.

3.2 Initial Solution

For the initial solution of the search, an empty schedule is created based on the number of
days and employees of the given problem instance, where each employee has an empty
shift assigned to them on each 24-hour period of the planning horizon. The activity
count of each shift is zero, which means that the other decision variables associated with
the shift are irrelevant until an activity is assigned by a move from the neighborhood
relations. The auxiliary variables also have zero values in this initial state. The solution
is infeasible, and the total cost is calculated and used as the initial cost. This empty
schedule is used as the initial state, which is populated with working shifts by the
neighborhood relations during the search.
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3.3 Neighborhood Relations

We propose a multi-neighborhood on the previously described search space, composed
of the union of eight neighborhoods:

– AddShiftActivity: A random empty shift is selected, and an activity is added to it
with a random task. A random start is also assigned to the shift and a random length
to the activity. The start of the shift is selected from the valid shift start times of the
day. The length is selected from the possible shift lengths that do not extend beyond
the planning horizon, given the already selected shift start time.

– RemoveShiftActivities: A random non-empty shift is selected, and all its activities
are removed.

– ChangeShiftStart: A random non-empty shift is selected, and its start is changed
to a different, random start. The start is selected from those valid shift start times of
the day that would not make the shift extend beyond the end of the planning horizon,
given its current length.

– SwapShifts: A random non-empty shift is selected, and its assignment is swapped
between its original employee and the employee of an other random shift from the
same day. The other shift can be either empty or not.

– ChangeActivityLength: A random non-empty activity is selected, and its length is
changed to a different, random length. The length is selected so that the shift would
not extend beyond the planning horizon, and the length of the shift up to the end of
the selected activity would not be longer than the maximum shift length and shorter
than the minimum shift length. The minimum activity length is also respected when
the previous criteria enable it.

– ChangeActivityTask: A random non-empty activity is selected, and its task is
changed to a different, random task.

– AddLastActivity: A random non-empty and non-full shift is selected, and a new
activity is added to its end with a random task, which is different than the task of the
previous activity. A random length is also assigned to the activity, and it is selected
so that the shift would not extend beyond the planning horizon, and the shift would
not be longer than the maximum shift length. When the previous criteria enable it,
the minimum activity length is also respected.

– RemoveLastActivity: A random shift is selected from the shifts that have at least
two activities, and the last activity of that shift is removed.

At each iteration step of the search, one of the eight neighborhood types is selected
with probabilities specified by associated parameters, then a move is randomly drawn
from the selected neighborhood. When the random selection of a variable cannot be
made during a move, the move is instantly rejected. For example, if there are no shifts
with at least one activity assigned to them, then moves from the RemoveShiftActivities
neighborhood are rejected.

3.4 Simulated Annealing

As the metaheuristic to guide the search, we implemented the Simulated Annealing
algorithm [11]. The method starts from an initial random state and at each iteration
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selects a random move from its neighborhood as explained above. Calling � 5 the
change in cost induced by the selected move, the move is always accepted if � 5  0, and
it is accepted with probability (1) when � 5 > 0, where )0 is the temperature parameter
controlled by the algorithm.

4
�� 5 /)0 (1)

We implemented the Fast Simulated Annealing [17] cooling scheme to determine
the temperature at each iteration, based on the number of the current iteration (t) and
the initial temperature (T0), as described by equation (2).

)0 (C) =
)0

(1 + C) (2)

The search is repeated for a set number of iterations, which number is a parameter
of the metaheuristic.

3.5 Efficient Implementation

The neighborhood relations and decision variables were designed to enable efficient
implementation of the search algorithm, so that a high number of iterations could be
executed even on large problem instances. The change in cost induced by new candidate
moves should be calculated only based on the constraints and variables directly relevant
to the actual neighborhood type and the exact move, and the state should be modified
only if the move is accepted. The proposed auxiliary variables are used for inspecting the
relevant constraints of the actual neighborhood relation. Shift indexes were introduced for
achieving low computational complexity when executing a SwapShifts move between
two employees. We also used other auxiliary variables and structures to help select
random variables and calculate the changes in cost during the search, but these are not
reported in this paper for the sake of brevity.

4 Experimental Results

4.1 Problem Instances

The algorithm was tested on the instances of the publicly available multi-activity shift
scheduling benchmark dataset [9]. The benchmark contains 225 different problem in-
stances, with varying difficulty. There are instances with lengths of 7, 14, and 28 days.
The number of staff varies from 10 to 150, and the number of tasks varies from 1 to
19. The problem size tends to increase with the instances. The features of the instances
are shown in Table 4. in the Appendix. It is known that every instance has a feasible
solution, due to the way the instances were created [10].
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4.2 Parameter Settings

A single parameter configuration was tested during the experiments on the different
problem instances, which is shown in Table 2. The table includes the parameters for
the Simulated Annealing metaheuristic and the weights assigned to the various hard
constraints.

Table 2. Parameter configuration

Parameter Assigned value
Initial temperature 800,000
Number of iterations 10,000,000
Maximum number of activities per shift 10
Each neighborhood relation probability 0.125
Weight for minimum rest time constraint 15,000,000
Weight for minimum workload constraint 1,500,000
Weight for maximum number of consecutive
working days constraint

1,000,000

Weight for shift length constraint 225,000
Weight for maximum workload constraint 150,000
Weight for minimum activity length constraint 150,000
Weight for minimum activity cover demand
constraint

10,000

The hard constraint weights are based on the problem instance files in XML format
found in the benchmark dataset, except for the weight for violating the minimum rest
time, for which we assigned a weight higher than the others. The neighborhood relation
probabilities were selected uniformly. The number of iterations was set so that the
runtime of the search on even the hardest problem instance would take no longer than 5
seconds. The initial temperature was chosen intuitively, based on trial runs on the hardest
problem instance. It is important to note that the presented method could significantly
benefit from parameter tuning, and employing a different cooling scheme or stopping
criterion might further improve the results.

4.3 Experimental Setup

The solution method was implemented in C++ and compiled using g++. The experiments
were run on a machine with 16 GB of RAM and a 3.3 GHz Intel Core i5-4590 processor,
using a single core during the tests. The number of iterations was selected so that the
search on each instance would take no longer than 5 seconds. A single run of our solution
method was performed on each problem instance of the dataset.

4.4 Results

The results of our solution method on each problem instance are shown in Table 4. in
the Appendix. We compare our results achieved by Simulated Annealing (SA) to the
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solver that produced the existing best known solutions for the benchmark dataset, the
method by Qu and Curtois [10], which uses Variable Neighbourhood Search (VNS).
The best result found for a problem instance is highlighted in bold and underlined. Only
feasible solutions are reported, in which none of the hard constraints are violated. A cell
contains “-“ if no feasible solution was found by a method under its time limit.

The authors of the VNS method used a time limit of 10 minutes for their experiments
on each instance, and they conducted their tests on a comparable machine (Intel Core
i5-4690K CPU 3.50GHz) to the one used in our tests.

For our solution method, we selected the number of iterations so that the runtime of
the search on each instance would not take longer than 5 seconds. The actual runtimes
ranged from 2.079 seconds on the simplest instance to 4.073 seconds on the most
complex one. It should be noted that the runtime scales well with the problem complexity
when using a fixed number of iterations for the search. Less than twice as much time
was needed for a problem instance with a four times longer planning period, fifteen
times as many staff, and nineteen times as many tasks, and it should be also considered
that the simplest instances had one task to be scheduled, meaning that moves from
three neighborhood types were always rejected in those cases, reducing the runtime.
The memory usage of the algorithm was also efficient, less than 4 MB of memory was
needed during the searches.

Table 3. shows an overview of the results on the benchmark dataset, comparing our
approach to the VNS method. Simulated Annealing was able to find feasible solutions
for most of the problem instances (201 out of the 225 total), of which 190 are the best
solutions found so far. It was able to find feasible solutions for many previously unsolved
problem instances, even for the most complex ones.

Table 3. Overview of the comparative results on the benchmark dataset

VNS [10] SA
Time limit 10 minutes 5 seconds

Number of instances for which
feasible solutions are found

107 201

Number of instances for which best
solutions are found

16 190

On the other hand, our approach could not find feasible solutions for some simpler
instances, 5 of which have been solved by VNS. The size of a problem instance does
not seem to affect finding a feasible solution for the Simulated Annealing. The search
randomly gets stuck in an infeasible local optimum in some cases, which could be
due to the selected cooling scheme or the parameters of the metaheuristic. Only a
single parameter configuration with equal probabilities for all neighborhood types was
tested, which implies that applying parameter tuning could greatly improve the results.
Improving the neighborhood relations and introducing new ones could also help escaping
the local optima, and different selection of weights for the hard constraints should also
be inspected. A single search was conducted on each problem instance, but the method
could benefit from selecting the best solution from more searches, run both in parallel
and by applying restarts.



134 László Kálmán Trautsch and Bence Kovari

The reported solutions were all validated using a verification software, which is
available for the benchmark dataset [9]. The software can be used to view and verify
the solutions created for the problem instances. It is able to identify any hard constraint
violations and calculate the cost function of a complete schedule. The accuracy of our
new computational results was ensured by using this validation.

5 Conclusions and Future Work

In this paper, we presented a multi-neighborhood Simulated Annealing method for
addressing a multi-activity multi-day shift scheduling problem. We introduced eight
different neighborhood relations for the search algorithm. We tested our approach on a
benchmark dataset and compared the results with the best existing solution available for
the problem. Our method was able to outperform the previously developed algorithm
on most of the problem instances and was able to find feasible solutions for many of
the unsolved ones. The results show that our approach can produce good schedules in
a matter of a few seconds, using limited computing resources. The method would be
able to find solutions for even larger problems than the most complex instances of the
benchmark dataset, as the results suggest. However, in some cases, it was not able to
produce feasible solutions even for some simpler instances, therefore there is still room
for improvement.

As part of our future work, first, we will investigate the possibility of improving
our proposed multi-neighborhood by introducing new types of relations and modifying
the existing ones. Secondly, we plan to configure our algorithm by using automated
parameter tuning to find better values for the probabilities of the neighborhood types,
the hard constraint weights, the initial temperature, and finally for the maximum number
of activities within the shifts. Applying a different cooling scheme and stopping criterium
might also improve the results. We will conduct further evaluations of our approach,
including experiments with longer runtimes, enabling the restart of the search method
multiple times on each problem instance, from which the best solution can be selected.
We also plan to extend our method to allow running searches on multiple threads in
parallel. Finally, we will create an iterative procedure for populating the initial state of
the search. This procedure would take every constraint into account for creating a good
initial solution in a short timeframe, thus speeding up the search method and possibly
enabling the production of better solutions.
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Table 4. Features of the problem instances and comparative results
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

1 7 10 1 387 383 114 14 80 8 - 5799
2 7 10 1 176 140 115 14 80 10 - 4006
3 7 10 1 317 290 116 14 90 3 5598 5214
4 7 10 1 328 304 117 14 90 5 8818 7985
5 7 10 2 115 37 118 14 90 6 - 8663
6 7 20 1 900 779 119 14 90 9 - 5399
7 7 20 1 818 783 120 14 90 12 - 3175
8 7 20 2 884 775 121 14 100 4 - 6946
9 7 20 2 500 353 122 14 100 5 - 9009
10 7 20 3 268 59 123 14 100 7 - 9779
11 7 30 1 844 788 124 14 100 10 - 7867
12 7 30 2 1541 1501 125 14 100 13 - 4061
13 7 30 2 1440 - 126 14 110 4 7573 7151
14 7 30 3 1469 - 127 14 110 6 - 9879
15 7 30 4 553 270 128 14 110 8 - 10015
16 7 40 2 1883 1580 129 14 110 11 - 7898
17 7 40 2 1831 1713 130 14 110 14 - 3758
18 7 40 3 1737 1457 131 14 120 4 7475 6877
19 7 40 4 1437 1034 132 14 120 6 - 11057
20 7 40 5 955 457 133 14 120 8 - 11847
21 7 50 2 1740 1647 134 14 120 12 - 7340
22 7 50 3 2646 2596 135 14 120 15 - -
23 7 50 4 2446 2115 136 14 130 5 - 8764
24 7 50 5 1795 1395 137 14 130 7 - 12460
25 7 50 7 1344 758 138 14 130 9 - 11958
26 7 60 2 1734 1594 139 14 130 13 - 7345
27 7 60 3 2904 2622 140 14 130 17 - 5093
28 7 60 4 3248 2836 141 14 140 5 8013 8859
29 7 60 6 2463 1918 142 14 140 7 - 12725
30 7 60 8 - 1121 143 14 140 10 - 13013
31 7 70 3 2574 2466 144 14 140 14 - 9022
32 7 70 4 3288 3182 145 14 140 18 - 5706
33 7 70 5 3170 3025 146 14 150 5 - 8763
34 7 70 7 - - 147 14 150 8 - 14321
35 7 70 9 - 1386 148 14 150 10 - 14824
36 7 80 3 2709 2536 149 14 150 15 - -
37 7 80 4 3335 3422 150 14 150 19 - 6012
38 7 80 6 3894 3610 151 28 10 1 1677 1486
39 7 80 8 - 2709 152 28 10 1 1509 1341
40 7 80 10 - 1787 153 28 10 1 1729 1597
41 7 90 3 2575 2643 154 28 10 1 1535 1299
42 7 90 5 4317 4302 155 28 10 2 - 255
43 7 90 6 4877 4463 156 28 20 1 3766 3565
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

44 7 90 9 - 3109 157 28 20 1 3523 3312
45 7 90 12 - 1539 158 28 20 2 3327 2663
46 7 100 4 3471 3635 159 28 20 2 2989 2071
47 7 100 5 4837 - 160 28 20 3 1803 696
48 7 100 7 5302 4331 161 28 30 1 3505 3264
49 7 100 10 - 3662 162 28 30 2 6551 5499
50 7 100 13 - 2171 163 28 30 2 6209 5370
51 7 110 4 3338 3553 164 28 30 3 - 4163
52 7 110 6 5084 5460 165 28 30 4 - -
53 7 110 8 6237 4980 166 28 40 2 7613 7173
54 7 110 11 - 3388 167 28 40 2 7317 7177
55 7 110 14 - 2694 168 28 40 3 8270 6710
56 7 120 4 3486 3410 169 28 40 4 - 5940
57 7 120 6 5991 5267 170 28 40 5 - 2960
58 7 120 8 6749 5931 171 28 50 2 6843 -
59 7 120 12 - 4643 172 28 50 3 - 8896
60 7 120 15 - 2714 173 28 50 4 - 7765
61 7 130 5 4932 4485 174 28 50 5 - 6374
62 7 130 7 6720 6366 175 28 50 7 - 3293
63 7 130 9 7086 6264 176 28 60 2 7179 6861
64 7 130 13 - 4449 177 28 60 3 - -
65 7 130 17 - - 178 28 60 4 - -
66 7 140 5 4057 4432 179 28 60 6 - 8477
67 7 140 7 6009 6370 180 28 60 8 - 4513
68 7 140 10 - 6719 181 28 70 3 - 10393
69 7 140 14 - 4462 182 28 70 4 - -
70 7 140 18 - 2685 183 28 70 5 - 13913
71 7 150 5 4063 4419 184 28 70 7 - 10329
72 7 150 8 7590 7367 185 28 70 9 - 5941
73 7 150 10 - 7330 186 28 80 3 11181 10544
74 7 150 15 - 5493 187 28 80 4 - 14658
75 7 150 19 - 2955 188 28 80 6 - 15811
76 14 10 1 598 550 189 28 80 8 - 10153
77 14 10 1 814 775 190 28 80 10 - 6690
78 14 10 1 634 581 191 28 90 3 - 10314
79 14 10 1 607 509 192 28 90 5 - -
80 14 10 2 292 88 193 28 90 6 - 16767
81 14 20 1 1659 1580 194 28 90 9 - 13170
82 14 20 1 1643 1561 195 28 90 12 - 5338
83 14 20 2 1387 1053 196 28 100 4 - 14039
84 14 20 2 1168 906 197 28 100 5 - -
85 14 20 3 520 123 198 28 100 7 - 20037
86 14 30 1 1738 1725 199 28 100 10 - 13458
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

87 14 30 2 2672 2541 200 28 100 13 - -
88 14 30 2 2780 2539 201 28 110 4 - 14678
89 14 30 3 2551 - 202 28 110 6 - -
90 14 30 4 - 1145 203 28 110 8 - 22346
91 14 40 2 3514 3324 204 28 110 11 - 15528
92 14 40 2 3767 3588 205 28 110 14 - 8984
93 14 40 3 3820 3232 206 28 120 4 - 14038
94 14 40 4 3980 3417 207 28 120 6 - 22210
95 14 40 5 - 1264 208 28 120 8 - -
96 14 50 2 3666 3390 209 28 120 12 - 15592
97 14 50 3 4921 4278 210 28 120 15 - 12832
98 14 50 4 4802 4095 211 28 130 5 - 17786
99 14 50 5 - 3602 212 28 130 7 - -
100 14 50 7 - 947 213 28 130 9 - 25974
101 14 60 2 3419 3327 214 28 130 13 - 15203
102 14 60 3 5473 5309 215 28 130 17 - -
103 14 60 4 5942 5914 216 28 140 5 - 18010
104 14 60 6 5620 4278 217 28 140 7 - -
105 14 60 8 - - 218 28 140 10 - 25463
106 14 70 3 5137 5170 219 28 140 14 - 19802
107 14 70 4 6892 6546 220 28 140 18 - -
108 14 70 5 - 5705 221 28 150 5 - -
109 14 70 7 - 4684 222 28 150 8 - 29983
110 14 70 9 - 3434 223 28 150 10 - 28523
111 14 80 3 5510 5310 224 28 150 15 - 19259
112 14 80 4 6748 7113 225 28 150 19 - 13429
113 14 80 6 8124 7034
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Abstract. In a perfect world, each high school student could pursue their interests
through a personalized timetable that supports their strengths, weaknesses, and
curiosities. While recent research has shown that school systems are evolving to
support those developments by strengthening modularity in their curricula, there
is often a hurdle that prevents the complete success of such a system: the schedul-
ing process is too complex. While there are many tools that assist with scheduling
timetables in an effective way, they usually arrange students into groups and classes
with similar interests instead of handling each student individually. In this paper,
we propose an extension of the popular XHSTT framework that adds two new
constraints to model the individual student choices as well as the requirements
for group formation that arise from them. Those two constraints were identi-
fied through extensive interviews with school administrators and other school
timetabling experts from six European countries. We propose a corresponding
ILP formulation and show first optimization results for real-world instances from
schools in Germany.

Keywords: Educational Timetabling, High School Timetabling, Integer Linear
Programming, XHSTT.

1 Introduction

As educational systems continuously evolve, crafting close-to-optimal high school
timetables continues to pose a major challenge. An important aspect that contributes to
this phenomenon is the increasing demand for personalized and flexible learning expe-
riences by all stakeholders of the educational system (policy makers, teachers, students
and society in general). This demand results in modular educational systems, where
students can choose parts of their own curriculum individually. However, conventional
approaches to the creation of timetables can not fulfill the diverse needs of students. This
paper addresses the need for innovation in the encoding of constraints for high school
timetables, aiming to support the flexibility that modern modular educational systems
afford to students.

While traditional formats of constraint encoding do support most of the requirements
that schools have on timetables including the possibility to work with individual students
instead of classes, they are not able to represent the requirements of each student pursuing
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diverse individual academic interests in an adaptive manner. In this paper, we present an
extension of the XHSTT format [11] (introduced in the Third International Timetabling
competition [10]) that incorporates two new constraints, making possible to encode
flexible student course choices and class formation requirements while still supporting
all previous instances developed for this format. The need for those two new constraint
types became apparent through recent research that explored the timetabling demands
for schools across central Europe [12] which shows that there is a trend of enabling
students to follow their individual interests. Even though this new formulation features
students choosing their own respective courses, the problem is still very different from
University Course Timetabling Problems [8,7], which were already found to be solvable
when transformed to the XHSTT format [4].

While, our new formulation has some similarities to the student choices featured
in the Post Enrolment based Course Timetabling (PE-CTT) Problem, which was first
presented in the second track of the ITC 2007 [6], the problem we are modeling here has
some key differences: In the PE-CTT Problem students select a set of events that they
want to attend without providing alternatives or preferences. It is a hard constraint that
they visit all their selected events, while in our newly formulated Constraints it is possible
to specify that only a subset of a flexible quantity should be attended. Some additional
flexibility is provided in the University Course Timetabling Problem featured at the ITC
2019 [9]. While the students still attend a fixed amount of selected courses, the courses
themselves can be split into structured subparts that could be used to model distributions
of students to equivalent courses (e.g. Math_1_1 and Math_1_2). However, to the best of
our knowledge, there is no constraint in any Educational Timetabling format that would
enable us to model student choices on the individual level in the flexible manner that
is desired in modular educational systems. Finally, since we are solving High School
Instances and not University Instances, we use almost all the different constraints of
XHSTT, so it is much more efficient to extend this format instead of an University
Timetabling format that focuses on other qualities that we mostly do not need (e.g.
differentiating between different weeks of the semester and complex orderings and
structures of events).

We hope that by extending the standard high school timetable format we will be
able to spur new original research that adapts and improves methods of automatic
timetabling for modular high schools. We support these developments explicitly by
providing an ILP formulation that extends one of the state-of-the-art ILP formulations
by Kristiansen et al. [5] as well as 18 publicly available instances that include the new
constraints. Additionally, we present first results for upper bounds using our ILP.

This paper is structured as follows: In Section 2, we introduce the new constraints as
well as how they can be used and provide examples of how to encode various situations
that may occur in modular school timetables. In Section 3, we provide a corresponding
extension to the well-known ILP formulation by Kristiansen et al. [5]. In Section 4, we
describe the new instances in our format and provide some first results. The instances are
made publicly available as a benchmark set for modular high school timetabling. Finally,
in Section 5, we provide an overview of our findings and describe possible directions of
future research.
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2 An Extension to the XHSTT Format

The XHSTT format [11] is the most widely used format for encoding the High School
Timetabling Problem. It is versatile enough to encode many real-world instances of
timetable requirements from various schools around the world accurately. However, in
recent years there has been a trend of giving students more choices in what individual
courses they wish to attend. While some of the requirements that arise from those choices
can be modeled using the existing constraints, others are not supported by the XHSTT
format. Since the goal of the XHSTT format is to provide a way to encode timetable
requirements in a unified way, we find it important that those recent developments
reflect themselves in the form of an extension of the format. This extension should be
as small as possible while still being able to accurately encode the new constraints for
timetables. Furthermore, we find that everything that can be encoded with the existing set
of constraints should still be encoded using them (even when it is in a slightly roundabout
way) in order not to put an unnecessary strain upon those who maintain and possibly
want to extend existing methods and solutions for solving the High School Timetabling
Problem. Finally, it is also important that the format only includes constraints that are
actually useful for those in charge of creating the timetables. That is why the constraints
proposed in this paper are chosen based on a study [12] where experts across Europe
were asked about the challenges they face when creating timetables for high schools. The
result of all of those requirements are three new constraint categories that encode student
choices, class size requirements and class size balance. Of those three requirements, the
class size requirements will be encoded using the existing constraints of the XHSTT
format while the other two require one new constraint type each.

2.1 Student Choices

From the interviews conducted in the paper by Ruiz-Torrubiano et al. [12] it becomes
apparent that many schools offer course choices to students in one form or another,
especially in the respective upper cycles. Such choices can range from choosing a general
direction (profile) for their studies, which usually results in scheduling all students with a
given profile together, to individual course choices subscribing them to specific courses
together with other students that made the same election. However, once there is a
certain level of modularity it is usually in practice infeasible to schedule the courses
in such a way that every student can attend exactly the courses they have selected. To
deal with that problem schools have adopted two different methods to manage student
course choices. Either they create a timetable first, and students choose lectures that fit
into their individual schedules, or students give priorities and/or alternatives for their
choices and the timetabler tries to fulfill those preferences to the best of their ability.
The first possibility is already supported in XHSTT by simply creating courses with no
classroom assignment together with some time preference constraints for said courses.
However, the second method requires a possibility to model how many from a pool of
courses can be attended on an individual resource level. So for example, a student that
wishes to learn another language might choose to attend a Spanish course, if they do
not get into that course they would like to learn Italian and if there is also no more room
in the Italian course they might want to learn French. It is a hard requirement for that
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student that they will exactly attend one of those courses. Another student may want to
specialize in natural sciences, and they want to attend biology, physics and chemistry
eventually while not caring exactly how many of those subjects they will attend in the
following year as long as it is at least one. An example for how this constraint may
look like can be seen in Figure 1. Additionally, the school might also support that
students provide weights (preferences) to their choices. Note that while we designed this
constraint to model course choices for students, it can also be used to model teaching
preferences, which are also a common theme for many high schools.

All those requirements can be unified into a new constraint type which we call
Student Choice Constraint. The constraint has the standard children that all XHSTT
constraints share (Id, Name, Required, Weight, CostFunction) the AppliesTo tag consists
of Resources and ResourceGroups children. Additionally, the constraint has the child
categories EventGroups, Minimum and Maximum.

1 < S t u d e n t C h o i c e C o n s t r a i n t Id =" StudentChoice_ST_Bob ">
2 <Name>StudentChoice_ST_Bob< / Name>
3 <Requ i r ed > t r u e < / Requ i r ed >
4 <Weight>50< / Weight>
5 < Co s t Func t i o n > L i n e a r < / Co s t Func t i o n >
6 <Appl i e sTo >
7 <ResourceGroups / >
8 < Resou r ce s >
9 <Resource Re f e r ence ="ST_Bob" / >

10 < / Resou r ce s >
11 < / Appl i e sTo >
12 <EventGroups>
13 <EventGroup Re f e r ence =" Bio logy_10 " / >
14 <EventGroup Re f e r ence =" Phys i c s_10 " / >
15 <EventGroup Re f e r ence =" Chemis t ry_10 " / >
16 < / EventGroups>
17 <Minimum>1< / Minimum>
18 <Maximum>3< / Maximum>
19 < / S t u d e n t C h o i c e C o n s t r a i n t >

Fig. 1: Student Choice Example

– AppliesTo: Each resource that is either part of the Resources child or is part of
a resource group, which is mentioned in the ResourceGroups child, is a point of
application for this constraint.

– EventGroups: All Event Groups mentioned in this child are relevant to the con-
straint.

– Minimum: Each resource this constraint applies to has to attend at least Minimum
Event Groups from the relevant Event Groups for this constraint.
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– Maximum: Each resource this constraint applies to can, at most, attend Maximum
Event Groups from the relevant Event Groups for this constraint.

The deviation of the constraint is described as follows: For each resource part of the
Resources and ResourceGroups the deviation is equal to the number of Event Groups
that the resource attends, which exceed the Maximum or fall short of the Minimum.
Note that we define attendance as visiting any subevent of a given Event Group.

This constraint can also be used to encode weighted preferences. Imagine a student
who wants to attend one out of 3 courses �, ⌫, and ⇠ but has a preference order of
� � ⌫ � ⇠. First, a hard constraint can be added where the EventGroups child contains
all 3 courses, and the Minimum and Maximum are set to 1. We then add a soft constraint
containing only Events � and ⌫ and another constraint containing only event �. Again
we set the Minimum and Maximum to 1 for both soft constraints. Depending on the
weights of the Soft constraints we can now adjust the importance of the student getting
his first or second choice.

2.2 Class Sizes

Whether it is due to room limitations, pedagogic restrictions, or legal reasons (supervi-
sion duties), schools usually have limits on how large the classes for each course can be
at most. In a system without student choices, this is usually enforced when the classes
are put together before scheduling the individual lessons. Events where the classes are
split and mixed are often modeled using one main Event (to which the whole class
is assigned) and multiple subevents that are all linked to the main event under the as-
sumption that none of the students attend multiple of those subevents. This works, for
example, if one wants to split all students from one class level into two math groups, and
every student has to choose a second foreign language. However, this method quickly
becomes more complex the more individual the student choices become since it most
likely won’t be possible to build sets of subjects that have no student overlaps while
also not creating many idle periods in student timetables and giving all of the students
their preferred subjects, which means that there is a need to find some optimal balance
between those constraints. Usually there are restrictions that don’t allow for any idle time
in student timetables during certain periods, while other periods are more flexible (e.g.,
in the afternoon). Building the classes as part of the optimization problem allows the
solver to find which classes to group dynamically based on when it schedules them, also
taking into account how important it is to fulfill each individual student’s choice. We can
model those restrictions using the existing XHSTT constraints, which makes it easier
for existing approaches to adapt to those changes. In the following, we describe exactly
how to model this class size problem because the translation into XHSTT constraints is
not completely trivial. However, first, we want to recap how the XHSTT format works
on a high level.

An instance in the XHSTT format consists of Times, Resources, Events, and Con-
straints. The Events have a duration, which specifies how many time slots must be
assigned to them. How exactly those times are distributed over the week is specified
as part of the Constraints. We say that each block of consecutive time slots that is
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part of the final schedule builds a SolutionEvent (or subevent). Each of those Solu-
tionEvents specifies some resource requirements that can either come in the form of a
fixed AssignedResource or a flexible UnassignedResource. In the case of an Unassigne-
dResource, there are often some constraints that restrict the pool of possible concrete
resource assignments. Finally, the set of Constraints also consists of other types of
Constraints that further impose limits on when, how often, and in what constellations
Events, Resources, and groups of Events and Resources are scheduled.

With that basic understanding of the XHSTT format, we can now get into how we
modeled the class sizes. First of all, we assume that three resource types exist (but it
is possible to arbitrarily add more): Teachers, Rooms, and Individual Students. If fixed
classes still exist for certain courses they can easily be modeled by assigning all students
of that class directly to that course. For those courses that should be built by the solver,
we create three event types:

1. One main event that will be used in all constraints that handle the time assignment
of the lessons. This main event will also be used to either directly assign a room
and teacher or model the resource preferences for those two resource types. Any
restrictions on how the event should be split and distributed over the week will also
be applied here

2. As a next step, we create one event for each student resource that is required to
fulfill the minimum student number of the course B<8= (e.g., if it needs at least 10
students to build a language class we create 10 events). They only have one student
event resource which is usually not preassigned (can optionally be preassigned to
a specific student if attendance is mandatory). We also need a hard Assign and
Prefer Resource Constraint so that only those students who choose the course can
be assigned and all events must have a student assigned.

3. Next, we need to add a hard Avoid Split Assignments constraint for each Event
(modeled with an Event Group that only contains one student Event) which ensures
that two subevents of the same Event can’t have different student assignments.

4. Afterwards, we add a hard Link Events Constraint to the main Events so that all
subevents must have the exact same time assignments as the main Event. Through
hard Avoid Clashes Constraints on the individual students this also guarantees that
each subevent must have a different student assigned. We will henceforth call Events
of this type "minimum requirement events".

5. As a final step, we create Events that are very similar to the previous ones but
contain those students that are optional from the Event perspective. We create a
total of B<0G � B<8= events of this type. All constraints are the same except that
we do not use any Assign Resource Constraints since it is fine if no students are
assigned to the Event (The Prefer Resource constraints have to stay so that if a
student is assigned it must be one that chose the class). We will henceforth call
events of this type "maximum requirement events"

Note that it would be possible to combine the student requirement events into a
single event from a modeling perspective (using a separate Role for each student). We
decided against this approach in case that some existing solvers might enumerate all
combinations of resource assignments for each Event, which would lead to an expo-
nential amount of such combinations. In all other aspects the approaches are to the
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best of our knowledge equivalent, except that it would be possible to directly quantify
over 1 variables in the two new proposed constraint types. However, quantifying over
EventGroups instead of individual Events gives the advantage that we can use more
"high level" constraints, for example if we go back to the example provided in Listing 1
Biology_10, Physics_10 and Chemistry_10 could each be an EventGroup that represents
multiple courses (e.g. Biology_10_1, Biology_10_2 and Biology_10_3). We would then
add three more Student Choice Constraints (one for each subject) for ST_Bob each with
a Minimum set to 0 and Maximum set to 1. The result is that on the high level Bob will
visit between 1 and 3 of his selected choices and on the lower level he will be assigned
to exactly one course corresponding to the assigned subjects.

2.3 Class Size Balance

Sometimes one subject is taught in multiple courses handling exactly the same school
material because the number of students is too big for one single classroom and teacher.
One way to handle this using existing constraints is to simply use two teachers and
rooms for the class while also scaling the student requirements. However, this has the
restriction that both of those courses would need to happen in parallel, which takes away
some flexibility, especially when the student schedules are very individual.

A better alternative would be to have two completely separate courses. With the
help of Student Choice constraints, we can then model that a student can or must attend
one of them. However, this could result in the undesirable property of possibly very
unbalanced class sizes (e.g., two math classes, one with the bare minimum assignment
of 10 students while the other is fully booked with 30 students). To prevent this, we
introduce Balance Class Size constraints that, aside from the standard children that all
XHSTT constraints share (Id, Name, Required, Weight, CostFunction), have the tags
AppliesTo with the child EventGroups, Role and MaximumDifference. An example for
how this constraint would be modeled in the case of two equivalent math classes can be
found in Figure 2.

– AppliesTo: Each Event Group that is mentioned in the EventGroups child is relevant
for this constraint.

– MaximumDifference: An integer that sets a limit of how much difference between
the number of assigned resources can be between the Event Groups without causing
a deviation.

– Type: Optional child. If a Type is given only resources with this type are counted
towards the assigned resources of each event.

The deviation of this constraint is described as follows: For each Event Group
that is part of the EventGroups child, the deviation is calculated as the Maximum
Difference to the Event Group (part of the Event Groups Child) with either the most
or the least assigned resources (depending on which difference is higher) minus the
allowed MaximumDifference.



146 A. Krystallidis and R. Ruiz-Torrubiano

1 < B a l a n c e C l a s s S i z e C o n s t r a i n t Id=" Ba l anceC la s sS i z e_Ma th_5a ">
2 <Name> Ba l anceC la s sS i z e_Ma th_5a < / Name>
3 <Requ i r ed > f a l s e < / Requ i r ed >
4 <Weight>1< / Weight>
5 < Co s t Func t i o n > L i n e a r < / Co s t Func t i o n >
6 <Appl i e sTo >
7 <EventGroups>
8 <EventGroup Re f e r ence =" Math_1_5A " / >
9 <EventGroup Re f e r ence =" Math_2_5A " / >

10 < / EventGroups>
11 < / Appl i e sTo >
12 <MaximumDifference>2< / MaximumDifference>
13 <Type> S t u d e n t < / Type>
14 < / B a l a n c e C l a s s S i z e C o n s t r a i n t >

Fig. 2: Balance Class Size Example

3 ILP Formulation

In this section we introduce an ILP model that can be used to solve an instance of our
extension to the High School Timetabling Problem. For this purpose we will extend the
formulation from Kristiansen et al. [5] by our two new constraints as well as the relevant
variables and linkings. In this section, we will only describe the new constraints. The
full ILP formulation can be found in the Appendix. Note that for the moment our new
instances and format only support linear and quadratic cost functions.

3.1 Sets

First, we introduce some sets of entities relevant to the extended modular XHSTT
problem which are the same as used by the model for the original problem [5].

C 2 ) ordered set of times (1)
C6 2 )⌧ set of time groups (2)
A 2 ' set of resources (3)
4 2 ⇢ set of events (4)
46 2 ⇢⌧ set of event groups (5)
4A 2 4 set of event resources of an event 4 (6)
B4 2 4 set of subevents of an event 4 (7)
2 2 ⇠ set of constraints (8)
? 2 2 points of application of constraint 2 (9)
3 2 ? deviations of a point of application ? (10)
8 2 � possible deviation values of deviations 3 (11)
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9 2 � possible deviation sum values at points ? (12)
)

start
B4,C

possible start times for se that occupy C (13)

3.2 Further Notation

Next, we need some further notation to express some of the constraints.

A⇡ dummy-resource with meaning no resource assigned (14)
C⇡ dummy-time with meaning no time assigned (15)
⇡4 duration of event 4 (16)
⇡B4 duration of subevent B4 (17)
4 2 2 constraint 2 applies to event 4 (18)
A 2 2 constraint 2 applies to resource A (19)
46 2 2 constraint 2 applies to event group 46 (20)
F2 weight of constraint 2 (21)
d(C) index of time C in ordered set ) (22)
%�4A is 1 if event resource 4A has a preassigned resource otherwise 0 (23)

⌫2 upper limit of constraint 2 (24)
⌫
2

lower limit of constraint 2 (25)

3.3 Variables

Compared to the formulation by Kristiansen et al. [5], we added the variables 1 and 2
which are required to model if a resource is participating in Events or Event Groups.

GB4,C ,4A ,A binary, indicates if B4 starts at C and A is assigned to 4A (26)
HB4,C binary, indicates that B4 starts at C (27)
EC ,A integer, indicates how often A is used at C by any B4 (28)
FB4,4A ,A binary, indicates if B4 is assigned A for 4A (29)
14,A binary, indicates if A is assigned to any B4 of 4 (30)
246,A binary, indicates if A is assigned to any 4 of 46 (31)
B2,?,3 integer, deviation 3 at point of application ? of 2 (32)
B2,?,3,8 binary, indicates that 3 has value 8 at ? of 2 (33)

D
SquareSum
2,?, 9

binary, indicates that the sum of deviations at ? is 9 (34)

DB4 binary, indicates whether B4 is active or not (35)
@A ,C binary, indicates if A is busy at C (36)
?A ,C6 binary, indicates if A is busy at some C in C6 (37)
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3.4 Functions

We also need to introduce some functions that will mainly be used to express the
objective value of the problem.

5 (B2,?,3) = F2 · CostFunction(B2,?,3) cost of constraint 2 (38)

⇠�
Sum =

’
?22,32?

B2,?,3 Sum cost function (39)

⇠�
SumSquare =

’
?22,32?,82�

8
2 · B2,?,3,8 SumSquare cost function (40)

⇠�
SquareSum =

’
?22, 92�

9
2 · DSquareSum

2,?, 9
SquareSum cost function (41)

Some constraints have an upper limit and a lower limit. In this case we define the
value of deviation + using the function*

⌫2 ,⌫2
+ as follows:

B � *
⌫2 ,⌫2

+ !
(
B � + � ⌫2
B � ⌫

2
�+

deviation with upper and lower limit (42)

3.5 Updated Objective Function

The objective function consists of the sum of all cost functions of individual constraints.
We can also split this objective function into separate values I⌘0A3 and IB> 5 C to denote
the costs of hard and soft constraints respectively. Compared to the objective function by
Kristiansen et al. [5], we simply extended the function by adding the terms describing
the deviation of our new constraint types.

min I = 5 (Bassignres
2,4A

) + 5 (Bassigntime
2,4A

) + 5 (Bspliteventamount
2,4

+ Bspliteventdur
2,4

)
+ 5 (Bdistsplitevent

2,4,4A
) + 5 (Bpreferres

2,4A
) + 5 (Bprefertime

2,4
) + 5 (Bavoidsplit

2,46
)

+ 5 (Bspreadevent
2,46,C6

) + 5 (Blinkevent
2,46,C

) + 5 (Bavoidclashes
2,A ,C

) + 5 (Bunavailabletimes
2,A

)

+ 5 (Bidletimes
2,A

) + 5 (Bclusterbusy
2,A

) + 5 (Blimitbusy
2,A ,C6

) + 5 (Blimitworkload
2,A

)
+ 5 (Bbalancesize

2,46
) + 5 (Bstudentchoice

2,A
)

(43)

3.6 Constraints

Added General Constraints

The model needs several linking constraints and other general constraints to make
the variables express the above-described properties. We will only describe those gen-
eral constraints that were added to the model of Kristiansen et al. [5] the remaining
constraints can be found in the Appendix.
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The following new constraints link variables FB4,4A ,A and our new variables 14,A :

FB4,4A ,A  14,A 84 2 ⇢ , B4 2 4, 4A 2 4, A 2 ' (44)’
B424

FB4,4A ,A � 14,A 84 2 ⇢ , 4A 2 4, A 2 ' (45)

To link our new variables 246,A to 14,A we need two more new constraints:

14,A  246,A 846 2 ⇢⌧, 4 2 46 (46)’
4246

14,A � 246,A 846 2 ⇢⌧ (47)

Balance Class Size Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use the parameter ⌫2 to denote the maximum class size difference specified in
constraint 2 2 ⇠. The role parameter is optional and denotes that only resources of a
specific role in the event should be considered We use the variable <A2,46 to denote the
number of resources allocated to the specified Event Group

’
4246,4A24,

A24A ,C H ?4A=C H ?42\{A⇡ }

246,A = <A2,46 82 2 ⇠, 46 2 ⇠ (48)

<A2,46 � <A2,462 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (49)

<A2,462 � <A2,46 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (50)

Student Choice Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
4622,4246,4A24,A24A ,A=A2

246,A  Bstudentchoice
2,A

82 2 ⇠, A2 2 2 (51)

3.7 Model Size Reductions

Using the model described above without any additions results in models that are too big
to handle on our computing cluster with 64 GB of RAM for most of the instances. For
that reason, we eliminated some variables that would never be used for an acceptable
solution. Our variable eliminations consist of the following list:
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– We eliminated all variables GB4,C ,4A ,A and FB4,4A ,A for students A that did not select
an Event 4, B4 2 4. This means that we do not permit solutions where students who
did not select an event are assigned to one of its subevents (which is supported by
practice).

– We only generate subevents with a feasible duration if there is a hard split events
constraint restricting the duration and/or amount of generated subevents. [3] This is
the same technique that was used by Fonseca et al. [2] to reduce model sizes.

4 Evaluation

4.1 Instances

As a first benchmarking set1, we chose 18 high schools with modular school systems
from 6 different federal states in Germany. Note that the secondary educational sys-
tems in Germany can vary greatly depending on the particular federal state [12], which
makes this set more diverse than instance groups from most other countries. The orig-
inal anonymized instances were provided by Untis GmbH2, an Austrian company that
specializes in software that assists schools with their various scheduling problems. We
implemented methods to automatically translate their format for encoding constraints
to the new extended XHSTT format, which enables us to provide many more instances
in the future (Untis collaborates with over 26,000 schools worldwide). However, it is
important to note that the XHSTT instances are not a one to one match semantically with
the original instances provided by Untis. This is due to the complex nature of the Untis
specification that uses a lot of empirical experience to evaluate timetables on factors that
can’t be represented in a standardized format. We still managed to achieve an extended
XHSTT formulation that matches the Untis formulation closely. Some statistics of the
instances can be found in Tables 1 and 2. Table 1 describes how many resources of
each resource type are used in each instance. Note that we do not include the mini-
mum/maximum requirement events in the event count since we categorize them as part
of the original event and they will always be scheduled together. However, we list the
number of requirement events as well as other quantifiable properties that describe the
modularity of each instance in Table 2. Note that the amount of requirement events
is equal to the number of student assignments that can (but don’t necessarily have to)
happen to modular events. Table 2 lists how many Student Choice and Balance Class
Size constraints each instance uses. The column Modular Events describes the cardi-
nality of the subset of events that have minimum and/or maximum requirement events
associated with them. However, there are many more factors that can have an impact on
how complex the resulting instance will be. One factor of complexity is the number and
type of constraints from the original XHSTT problem definition. Another factor that has
a significant impact is the size of the student pool that is feasible for each requirement
event. An instance will be much harder if it features some events where a high per-
centage of the total amount of students wants to participate in certain events. It is also
noteworthy that compared to most other benchmark instances of the original XHSTT

1https://github.com/IMC-UAS-Krems/modularXHSTT
2https://www.untis.at

https://github.com/IMC-UAS-Krems/modularXHSTT
https://www.untis.at
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problem, this instance set is more restrictive on the possible times for events and the
available times for students and teachers. Specifically, there are constraints restricting
how many primary subjects a student can attend per day/in a row, how many lessons a
teacher may teach in a row without a break, minimum and maximum amounts of idle
times per week for teachers, global constraints that define a time-window when a lunch
break can/must happen for both students and teachers and hard restrictions that allow
no student idle times in the hours before lunch. We made sure to choose schools of
varying sizes and proportions of modular events so that it will be possible in the future
to find out where the complexities of the problem lie. We also plan to extend this set of
instances in the future with other modular schools from across Europe to cover more of
the possible instance space.

Table 1: Amount of resources present in each of the new instances (by resource type).

Instance Events Students Classes Teachers Rooms
GermanyRHPF1 1430 143 141 142 208
GermanyHAMB1 554 847 10 104 80
GermanyNRWE1 627 118 52 185 186
GermanyHAMB2 636 215 43 106 73
GermanyNRWE2 329 252 16 40 69
GermanyRHPF2 414 134 25 88 74
GermanyRHPF3 454 167 25 92 84
GermanyNRWE3 226 252 16 40 69
GermanyNRWE4 1045 331 112 185 310
GermanyRHPF4 545 894 0 83 106
GermanySAAR1 428 169 25 75 65
GermanyRHPF5 375 182 21 75 61
GermanyRHPF6 526 360 30 107 67
GermanyBAWU1 832 157 76 201 176
GermanyBAWU2 976 272 59 122 173
GermanyBAWU3 241 228 22 92 71
GermanyBAWU4 762 205 24 106 70
GermanyHESS1 705 181 49 177 225

4.2 ILP Evaluation

Based on the size of the new instances and the added complexity from the new constraints
we expect the new instances to be more difficult to solve than previous benchmark sets
for the XHSTT. Previous experiments [5] using ILP as an exact method have shown that
the problem is still too challenging for modern ILP solvers when using bigger instances.
Therefore, we expect to only produce weak upper bounds using the above-described
ILP model. Nevertheless, we find it important to provide first results for the newly
introduced problem, which should show whether the problem is trivial to solve or not.
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Table 2: Quantifyable properties describing the modularity of the new instances.

Instance Choice Constraints Balance Constraints Modular Events Requ. Events
GermanyRHPF1 2378 34 142 2440
GermanyHAMB1 911 42 46 970
GermanyNRWE1 1254 60 73 1265
GermanyHAMB2 2053 62 112 2206
GermanyNRWE2 2408 56 106 2893
GermanyRHPF2 1476 40 93 1385
GermanyRHPF3 1718 50 109 1892
GermanyNRWE3 1677 35 73 1942
GermanyNRWE4 3433 79 179 3828
GermanyRHPF4 3984 100 241 4063
GermanySAAR1 1421 57 81 1596
GermanyRHPF5 1904 41 124 2622
GermanyRHPF6 2567 21 131 3255
GermanyBAWU1 1452 45 76 1764
GermanyBAWU2 3743 84 176 4112
GermanyBAWU3 2473 75 162 2496
GermanyBAWU4 2309 61 160 2347
GermanyHESS1 2947 24 47 1189

While employing ILP as an exact method might not yield practical solutions directly,
past research suggests its potential when integrated into metaheuristic or matheuristic
approaches for tackling the High School Timetabling Problem [1,2].

Table 3 displays the outcomes of executing the 18 instances, with a Memory Limit set
at 64 GB, on an AMD EPYC 7252 processor utilizing the commercial ILP solver Gurobi
version 10.0.1. Each instance was allotted a time limit of 6 hours for computation. This
time frame notably exceeds the 1000-second constraint imposed during the ITC2011
competition. The objective value is split into two components of the form (hard, soft)
constraint deviations.

It’s worth noting that in practical scenarios, schools typically face fewer time con-
straints when devising their timetables. They are often willing to invest several hours, or
even days, in computational time without significant pressure. However, it’s crucial to
strike a balance between computational resources and research accessibility. Excessive
resource consumption could potentially limit accessibility to the problem, which runs
counter to the goal of fostering open research.

The experiment reveals the complexity inherent in the problem, suggesting that exact
methods may struggle to provide satisfactory solutions. Out of the 18 instances studied,
solutions were only found for 10.

Furthermore, the integral solutions obtained from the experiment did not meet the
criteria necessary for a viable school timetable. Despite leveraging Gurobi’s optimization
capabilities, the solutions fell short, underscoring the intricacies of the problem and the
limitations of current methodologies.
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Table 3: ILP results and statistics on 6-hour run.

Instance Variables Constraints Objective Value
GermanyRHPF1 9007909 67145239 —
GermanyHAMB1 22276651 61355937 —
GermanyNRWE1 5282717 22736030 (152422, 2330)
GermanyHAMB2 6268589 19983356 —
GermanyNRWE2 12183297 41285751 —
GermanyRHPF2 3013943 9066705 (125430, 4663)
GermanyRHPF3 6422201 21112371 (157904, 86000)
GermanyNRWE3 8581837 30750272 (75295, 206299)
GermanyNRWE4 23744735 88931169 —
GermanyRHPF4 42657262 87422983 —
GermanySAAR1 4695284 14566661 (142059, 23465)
GermanyRHPF5 5870336 14030401 (117175, 379454)
GermanyRHPF6 20876398 53277518 —
GermanyBAWU1 7567498 27892830 (231653, 70076)
GermanyBAWU2 11729612 31872156 (257726, 348709)
GermanyBAWU3 8464935 18952959 (81008, 3416)
GermanyBAWU4 7740808 19141384 (193313, 8665)
GermanyHESS1 5737775 29194865 —

Additionally, Gurobi’s inability to provide lower bounds within the designated time-
frame prevents us from assessing the optimality gap. However, there is potential for
progress as the schools that provided the instances have successfully created their own
timetables. In general it is not always possible to find feasible solutions for the re-
quirements encoded by schools. Untis deals with this problem by either leaving some
hours unscheduled or reporting the problems with the final timetable that will then be
manually resolved by the administrator, which then has to decide which hard constraints
can be softened. Nevertheless those solutions may enable us to establish tighter up-
per bounds in the future, enhancing our understanding of the problem and potentially
guiding optimization strategies.

5 Conclusion and Future Work

In this paper, we proposed an extension to the XHSTT format to address the constraints
that are present in the ever-growing number of modular high schools. We explained the
reasons that make those changes meaningful and how exactly they can be incorporated
into the XHSTT format. Furthermore, we provided 18 new real-world instances from
modular high schools of different regions in Germany together with an ILP model that
can be used to find feasible schedules. Our experiments showed that using our ILP model
as an exact method for finding solutions is not very effective, and even after 6 hours
of runtime, it could only find solutions that are nowhere near satisfactory. However,
based on the data from previous benchmarks those results were expected and should not
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discourage us from finding more efficient methods for creating timetables for modular
high schools. We believe that the real strength of the presented ILP will be revealed once
it is used as part of a heuristic approach like Large Neighborhood Search (LNS).

In future work, we want to use different exact methods, like a SAT solver to inspect
if the problem is really as hard as it seems to be or if ILP is simply not the right approach
for this problem. There has already been previous work into possible cuts for the original
ILP model and we plan to look into possible new cuts for our extension as well. It will
also be interesting to see how the various heuristics developed for the original High
School Timetabling Problem perform on this extension and if new heuristics can be
found that might work even better for this extension. Specifically, we want to look into
a more adaptive LNS-based approach to see if methods from Reinforcement Learning
can be used to improve the process of finding good schedules. We will support those
developments by providing more benchmark instances from all across Europe together
with a publicly available tool for validation. Finally, we will also compare future findings
with the timetables produced for actual schools to see if there is any gap between theory
and practice.

Acknowledgements A. Krystallidis and R. Ruiz-Torrubiano acknowledge financial
support from the Research Promotion Agency of Lower Austria (GFF) under project
grant FTI21-A-002.
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Appendix

Complete ILP Formulation

The variables, sets, functions and general further notation of the model can be found
in Section 3. Here we provide the full set of constraints used in the model (with some
repetition from Section 3 to avoid confusion), as well as some further additions to
guarantee exact objective values.

Constraints

General Constraints Link variables B2,?,3 and B2,?,3,8:’
82�

8 ⇤ B2,?,3,8 = B2,?,3 82 2 ⇠, ? 2 2, 3 2 2 (52)

Only one deviation indicator can be set per deviation:
’
82�

B2,?,3,8 = 1 82 2 ⇠, ? 2 2, 3 2 2 (53)

Link variables B2,?,3 and DSquareSum
2,?, 9

:
’
92�

9 ⇤ DSquareSum
2,?, 9

=
’
32?

B2,?,3 82 2 ⇠, ? 2 2 (54)

Only one deviation indicator can be set per point of application:
’
92�

D
SquareSum
2,?, 9

= 1 82 2 ⇠, ? 2 2 (55)

Link variables B2,?,3 and DStepSum
2

:

" · DStepSum
2

� B2,?,3 82 2 ⇠, ? 2 2, 3 2 ? (56)

A subevent is assigned exactly one starting time and the number of assigned resources
equals the number of event resources (|4A |B4):’
C2) ,A24A

GB4,C ,4A ,A = 1 8B4 2 (⇢ , 4A 2 B4 (57)

’
4A2B4,A24A

GB4,C ,4A ,A = |4A |B4 · HB4,C 8B4 2 (⇢ , C 2 ) (58)

Link variables EC ,A and FB4,4A ,A :’
B42(⇢ ,4A2B4,C 0 2)start

B4,C

GB4,C 0 ,4A ,A = EC ,A 8C 2 )\{C⇡}, A 2 ' (59)
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’
C2)

GB4,C ,4A ,A = FB4,4A ,A 8B4 2 (⇢ , 4A 2 B4, A 2 4A (60)

The following new constraints link variables FB4,4A ,A and our new variables 14,A :

FB4,4A ,A  14,A 84 2 ⇢ , B4 2 4, 4A 2 4, A 2 ' (61)’
B424

FB4,4A ,A � 14,A 84 2 ⇢ , 4A 2 4, A 2 ' (62)

To link our new variables 246,A to 14,A we need two more new constraints:

14,A  246,A 846 2 ⇢⌧, 4 2 46 (63)’
4246

14,A � 246,A 846 2 ⇢⌧ (64)

A subevent can not be assigned a start time that does not have enough times after it to
fit its duration:

HB4,C = 0 8B4 2 (⇢ , C 2 )\{C⇡}, d(C) + ⇡B4 � 1 > |) | (65)

Only a subset of the subevents are active at a time (since we create all possible subevents).
A subevent is considered active if it has a starting time or resource assigned:’
A24A\{A⇡ }

FB4,4A ,A  DB4 8B4 2 (⇢ , 4A 2 B4, %�4A = 0 (66)

’
C2)\{C⇡ }

HB4,C  DB4 8B4 2 (⇢ (67)

’
C2)\{C⇡ }

HB4,C +
’

A24A\{A⇡ },
4A2B4,%�4A=0

FB4,4A ,A � DB4 8B4 2 (⇢ (68)

The sum of the durations of the subevents of an event must equal the total duration of
the event:’
B424

⇡B4 ⇤ DB4 = ⇡4 84 2 ⇢ (69)

Linking the variables @A ,C and ?A ,C6 that indicate if a resource is busy:

|(⇢ | · @A ,C � EC ,A 8A 2 ', C 2 )\{C⇡} (70)
@A ,C  EC ,A 8A 2 ', C 2 )\{C⇡} (71)
?A ,C6 � @A ,C 8A 2 ', C6 2 )⌧, C 2 C6 (72)

?A ,C6 
’
C2C6

@A ,C 8A 2 ', C6 2 )⌧ (73)

(74)

Events that have a given start time must have that time assigned (B4⇤, represents an
arbitrarily chosen subevent that has the same duration as the event 4):

HB4⇤,4Time = 1 84 2 ⇢ , 4Time < #>=4, B4⇤Duration = 4Duration (75)
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Assign Resource Constraint

Applies to: Events
Point-of-application: Event resource

⇡4 �
’
B424,

A24A\{A⇡ }

⇡B4 · FB4,4A ,A = Bassignres
2,4A

82 2 ⇠, 4 2 2, 4A 2 4, A>;44A = A>;42 (76)

Assign Time Constraint

Applies to: Events
Point-of-application: Event

⇡4 �
’

C2)\{C⇡ },B424
⇡B4 · HB4,C = Bassigntime

2,4
82 2 ⇠, 4 2 2 (77)

Split Events Constraint

Applies to: Events
Point-of-application: Event
We use the parameters ⌫amount

2
and ⌫amount

2
to denote the minimum and maximum amount

of events respectively. Likewise, we use the parameters ⌫3DA
2

and ⌫3DA
2

to denote the
minimum and maximum duration of a subevent that is part of a given event, respectively.
The full deviation of a constraint 2 2 ⇠ is given by Bspliteventamount

2,4
+ Bspliteventdur

2,4

*
⌫

amount
2 ,⌫

amount
2

’
B424

DB4  Bspliteventamount
2,4

82 2 ⇠, 4 2 2 (78)
’

B424,⌫3DA2 >⇡B4 ,⌫
3DA
2 <⇡B4

DB4 = B
spliteventdur
2,4

82 2 ⇠, 4 2 2 (79)

Distribute Split Events Constraint

Applies to: Events
Point-of-application: Event
We use the parameters ⌫

2
and ⌫2 to denote the minimum and maximum number of

subevents respectively. ⇡2 denotes the duration for which the constraint applies.

*
⌫2 ,⌫2

’
B424,⇡B4=⇡2

DB4  Bdistsplitevent
2,4,4A

82 2 ⇠, 4 2 2 (80)

Prefer Resources Constraint

Applies to: Events
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Point-of-application: Event resource

’
B424,A82,
A2'\{A⇡ }

⇡B4 · FB4,4A ,A = Bpreferres
2,4A

82 2 ⇠, 4 2 2, 4A 2 4, %�4A = 0, A>;44A = A>;42

(81)

Prefer Times Constraint

Applies to: Events
Point-of-application: Event
If ⇡2 is given only sub-events of Duration ⇡2 are considered. Otherwise, all sub-events
are considered (⇡2 = ⇡B4 is removed from sum).

’
B424,C82,

C2)\{C⇡ },⇡2=⇡B4

⇡B4 · HB4,C = Bprefertime
2,4

82 2 ⇠, 4 2 2 (82)

Avoid Split Assignments Constraint

Applies to: Event Groups
Point-of-application: Event Group
We slightly simplify this constraint compared to the original formulation, since we can
make use of our new 2 variables.’
4A24,%�4A=0,
A>;42=A>;44A

FB4,4A ,A  :2,46,A 82 2 ⇠, A 2 ', 46 2 2, 4 2 46, B4 2 4 (83)

’
A2'

:2,46,A � 1  Bavoidsplit
2,46

82 2 ⇠, 46 2 2 (84)

Spread Events Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use parameters ⌫

2,C6
and ⌫2,C6 to denote the minimum and maximum number of

sub-events of a given event that can be placed in time group C6 of a constraint 2 2 ⇠

*
⌫2,C6 ,⌫2,C6

’
B424246,C2C6

HB4,C  Bspreadevent
2,46,C6

82 2 ⇠, 46 2 2, C6 2 2 (85)

Link Events Constraint

Applies to: Event Groups
Point-of-application: Event Group
We define the binary variable >4,C that takes the value 1 if at least one sub-event of event
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4 is scheduled at time C, and 0 otherwise. We define the binary variable ;46,C that takes
the value 1 if at least one event in event group 46 is scheduled at time C, and 0 otherwise.

’
C
0 2)start

B4,C

HB4,C 0  >4,C 84 2 ⇢ , B4 2 4, C 2 )\{C⇡} (86)

’
B424,C 0 2)start

B4,C

HB4,C 0 � >4,C 84 2 ⇢ , C 2 )\{C⇡} (87)

;46,C � >4,C 846 2 ⇢⌧, 4 2 46, C 2 )\{C⇡} (88)

;46,C � >4,C  Blinkevent
2,46,C

82 2 ⇠, 46 2 2, 4 2 46, C 2 )\{C⇡} (89)

Order Events Constraint

Applies to: Pairs of Events
Point-of-application: Pair of Events
The variables ⌘first

4
and ⌘last

4
represent the first and last time assigned to any subevent of

event 4. We use parameters ⌫
2

and ⌫2 to denote the minimum and maximum number
of times to separate the pair of events (4, 40) which are specified in constraint 2 2 ⇠.

d(C) · HB4,C + ⇡B4  ⌘last
4

82 2 ⇠, 4 2 2, B4 2 4, C 2 ) (90)

|) | � ( |) | � d(C)) · HB4,C  ⌘first
4

82 2 ⇠, 4 2 2, B4 2 4, C 2 ) (91)

*
⌫2 ,⌫2

(⌘last
4
� ⌘first

4
0 )  Borderevent

2, (4,40 ) 82 2 ⇠, (4, 40) 2 2 (92)

Avoid Clashes Constraint

Applies to: Resources
Point-of-application: Resource

EC ,A � 1  Bavoidclashes
2,A ,C

82 2 ⇠, A 2 2, C 2 )\{C⇡} (93)

Avoid Unavailable Times Constraint

Applies to: Resources
Point-of-application: Resource

’
C22

@A ,C = Bunavailabletimes
2,A

82 2 ⇠, A 2 2 (94)

Limit Idle Times Constraint

Applies to: Resources
Point-of-application: Resource
We define the binary variables ⌘before

A ,C6,C
and ⌘after

A ,C6,C
to indicate if any events are happening
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before and after time C in the timegroup C6, respectively. We define the binary variables
⌘

timeslot
A ,C6,C

to indicate if time t is an idle time. We define the integer variable ⌘timegroup
A ,C6

to indicate the total amount of idle times in timegroup C6 We use |C6 | to indicate the
amount of times in a time group C6. We also use parameters ⌫

2
and ⌫2 to denote the

minimum and maximum values specified in constraint 2 2 ⇠.

@A ,C2  ⌘before
A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1, C2 2 C6, d(C1) > d(C2)

(95)’
C22C6,d(C1 )>d(C2 )

@A ,C2 � ⌘before
A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1 2 C6

(96)
@A ,C2  ⌘after

A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1, C2 2 C6, d(C1) < d(C2)
(97)’

C22C6,d(C1 )<d(C2 )
@A ,C2 � ⌘after

A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1 2 C6

(98)
⌘

before
A ,C6,C

� @A ,C + ⌘after
A ,C6,C

� 1  ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(99)

� @A ,C + 1 � ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(100)

⌘
before
A ,C6,C

� ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(101)

⌘
after
A ,C6,C

� ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(102)’

C2C6
⌘

timeslot
A ,C6,C

= ⌘timegroup
A ,C6

8A 2 ⇠', C6 2 ⇠)⌧

(103)

*
⌫2 ,⌫2

’
C622

⌘
timegroup
A ,C6

 Bidletimes
2,A

82 2 ⇠, A 2 2

(104)

Cluster Busy Times Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
C622

?A ,C6  Bclusterbusy
2,A

82 2 ⇠, A 2 2 (105)
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Limit Busy Times Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

� |C6 | · (1 � ?A ,C6) +*
⌫2 ,⌫2

’
C2C6

@A ,C  Blimitbusy
2,A ,C6

82 2 ⇠, A 2 2, C6 2 2 (106)

Limit Workload Constraint

Applies to: Resources
Point-of-application: Resource
The workload of a solution resource is given by F4,B4,4A = ⇡B4 ·!4A

⇡4
where !4A is an

integer denoting the workload of event resource er. We use parameters ⌫
2

and ⌫2 to
denote the minimum and maximum values specified in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
422,C2)\{C⇡ },B424,4A24

F4,B4,4A · GB4,C ,4A ,A  Blimitworkload
2,A

82 2 ⇠, A 2 2 (107)

Balance Class Size Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use the parameter ⌫2 to denote the maximum class size difference specified in
constraint 2 2 ⇠. The role parameter is optional and denotes that only resources of a
specific role in the event should be considered We use the variable <A2,46 to denote the
number of resources allocated to the specified Event Group

’
4246,4A24,

A24A ,C H ?4A=C H ?42\{A⇡ }

246,A = <A2,46 82 2 ⇠, 46 2 ⇠ (108)

<A2,46 � <A2,462 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (109)

<A2,462 � <A2,46 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (110)

Student Choice Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
4622,4246,4A24,A24A ,A=A2

246,A  Bstudentchoice
2,A

82 2 ⇠, A2 2 2 (111)
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Further Additions for guaranteeing exact objective values

Using the model as described above will result in valid/optimal schedules if the ILP
solver is run without a time limit. If there is a time limit the objective value provided by
the ILP solver might be bigger than the actual objective value of the produced schedule.
This is due to the formulation using the  operator in combination with the deviation
variables. So while it does lead to a worse objective value the ILP solver can save com-
putational time by setting the deviation variables higher than necessary. To mitigate this
issue for the constraints that feature an upper and lower bound we can add binary indi-
cators that tell the ILP solver which constraint to use based on the current assignments
(e.g. if the constraints have the form *

⌫2 ,⌫2
G  B) we set a binary variable 18=<0G = 1

if G > ⌫2 and a binary variable 18=<8= = 1 if G < ⌫
2
. We then use those indicators to

add the following constraints:

G � ⌫2 = B if 18=<0G (112)
⌫
2
� G = B if 18=<8= (113)

We proceed similarly for constraints of the form G1  B, G2  B, . . . , G=  B (where
G8 may represent an arbitrary linear expression). We can instead model them with the
following constraint:

max(G1, . . . , G=) = B (114)

Note that while we use so-called general constraints (indicator constraints, max con-
straints etc.) the ILP solver automatically transforms those into a set of linear constraints.
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Abstract. The Oven Scheduling Problem (OSP) is an NP-hard real-world parallel
batch scheduling problem arising in the semiconductor industry. The objective of
the problem is to schedule a set of jobs on ovens while minimizing several factors,
namely total oven runtime, job tardiness, and setup costs. At the same time, it
must adhere to various constraints such as oven eligibility and availability, job
release dates, setup times between batches, and oven capacity limitations. The
key to obtaining efficient schedules is to process compatible jobs simultaneously
in batches. In this paper, we develop theoretical, problem-specific lower bounds
for the OSP that can be computed very quickly. We thoroughly examine these
lower bounds, evaluating their quality and exploring their integration into existing
solution methods. Specifically, we investigate their contribution to exact methods
and a metaheuristic local search approach using simulated annealing. Moreover,
these problem-specific lower bounds enable us to assess the solution quality for
large instances for which exact methods often fail to provide tight lower bounds.

Keywords: Oven scheduling problem, Parallel batch scheduling, Lower bounds,
Exact methods, Simulated annealing

1 Introduction

The semiconductor manufacturing sector has been identified as one of the most energy-
intensive industries [17], particularly in the context of hardening electronic components
in specialized heat treatment ovens. To mitigate energy consumption, one strategy in-
volves grouping and processing compatible jobs together in batches to optimize resource
utilization. Such scheduling tasks that aim to increase efficiency by processing multiple
jobs simultaneously in batches are known as batch scheduling problems.

Over the last three decades, the scientific community has extensively investigated
batch scheduling problems, as witnessed by the surveys by [15,4]. A multitude of problem
variants, in the single or parallel machine setting, and each with distinct constraints
and objectives imposed by different industries [16,18] have been studied. One such
formulation, the Oven Scheduling Problem (OSP), was recently introduced by [10] and
is particularly pertinent to semiconductor manufacturing. The goal of this problem is
to efficiently schedule jobs on multiple ovens, aiming to minimize total oven runtime,
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job tardiness, and setup costs simultaneously. In order to reach these goals, compatible
jobs are grouped and processed together in batches. Schedules must adhere to various
constraints, including oven eligibility and availability, job release dates, setup times
between batches, oven capacity limitations, and compatibility of job processing times.

The OSP was initially addressed using exact methods as well as a heuristic con-
struction method: [10] proposed two different modeling approaches, encompassing
Constraint Programming (CP) and Integer Linear Programming (ILP) model formu-
lations. The exact approaches successfully identified optimal solutions for 38 out of
80 benchmark instances. However, for larger instances, optimal solutions were rarely
obtained within a time-bound of one hour. In a later extended abstract, a metaheuristic
local search approach based on Simulated Annealing (SA) was suggested by [11]. This
approach showed promising results, as optimal solutions could often be reached quickly
and non-optimal solutions were improved for numerous instances.

In practical settings, it is most often desirable to obtain solutions of sufficiently good,
albeit not necessarily optimal, quality within a short time frame. However, assessing
the solution quality becomes challenging in the absence of a baseline, i.e., when exact
methods are not employed or do not deliver tight enough lower bounds on the objective
value. Providing problem-specific, efficiently computable lower bounds on the optimal
solution cost can thus be very helpful in assessing the quality of a solution. Moreover,
lower bounds can aid existing solution approaches and increase their performance: in
exact methods, they can be used to bound the range of variables, and in (meta-)heuristic
search methods, they can be included in stopping criteria. Theoretical, problem-specific
lower bounds have been developed for batch scheduling problems in the literature.
[1] proposed a SA approach in a parallel batch setting and presented a procedure for
calculating lower bounds on the makespan. Additionally, lower bounds on the makespan
and total completion time have been addressed by [7]. The maximum lateness has been
tackled by [13,6]. While these lower bounds have been proposed for different batching
problems, not all features of the OSP have been considered previously.

Process

Oven Scheduling Problem
(Parallel Batch Scheduling Problem)

(Lackner et al. 2023)

Theoretical Lower Bound (LB)

How to assess 
solutions?

Greedy Algorithm
(Lackner et al. 2023)

Exact Methods
(Lackner et al. 2023)

Simulated Annealing (SA)
(Lackner et al. 2022)

Solution methods from the literature

Do LBs help 
exact methods?

Can we use LB together 
with UB to speed up 

exact methods?

Do LBs speed 
up SA?

How good are the 
theretical LBs?

Fig. 1: Overview of the goals targeted by this work.

In this paper, we present an approach to computing lower bounds for the objectives of
the OSP, making use of the imposed machine eligibility and processing time constraints.
The goals of this paper are visualized in 1. Our primary contributions are as follows:
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– We introduce a procedure to compute theoretical lower bounds for the OSP, more
specifically for the number of batches and the total oven runtime. These lower bound
results can be adapted to tackle related (parallel) batch scheduling problems. Our
approach differs from the existing literature as it considers machine eligibility and
compatibility of processing times.

– We conduct a comprehensive evaluation of the tightness of our calculated lower
bounds on a benchmark set consisting of 120 instances with up to 500 jobs. This
evaluation encompasses the overall cost function and its individual components.
We differentiate between instances where an optimal solution is available and those
where it is not. Notably, for larger instances with 50 jobs or more, our calculated
lower bounds provide a small gap w.r.t. the optimal solution value and very often
outperform the lower bounds generated by commercial solvers (when the optimal
solution value is not known).

– We integrate the derived lower bounds into state-of-the-art solution approaches and
demonstrate that they can aid with solving the OSP. Our experiments explore to
what extent exact methods benefit from being provided with the calculated lower
bounds. Furthermore, we investigate whether lower bounds can speed up Local
Search (LS) algorithms, such as SA. Using a 1% gap between the SA solution and
the calculated lower bound as a stopping criterion, many of the benchmark instances
can be solved very fast (50 of the 120 benchmark instances are solved in roughly 15
seconds on average).

– To encourage future contributions and enhance the replicability of results, we pro-
vide a software toolbox that enables the generation of instances and the calculation
of lower bounds.

The remainder of this paper is structured as follows. 2 introduces the OSP. 3 elaborates
on the theoretical calculations of lower bounds for the OSP. 4 displays proposals on how
to integrate lower bounds in the solution methods. 5 details our experimental evaluation.
Eventually, 6 draws some conclusions and suggests future research directions.

2 The Oven Scheduling Problem

The OSP aims to group compatible jobs into batches and devise an optimal schedule for
these batches across a set of ovens. We report an abridged description of the problem
and forward the interested reader to the rigorous mathematical formulation proposed in
the original paper [10].

An instance of the OSP consists of a set M = {1, . . . , :} of ovens (also referred
to as machines) as well as a set A = {1, . . . , 0} of possible attributes (also known
as job families in the literature). Each machine < 2 M is associated with a maximal
processing capacity 2< and an initial state 80< 2 A. Each oven presents a set of
availability intervals [0B(<, 8), 04(<, 8)], where 0B(<, 8) (04(<, 8)) indicates the start
(end) of the 8-th interval.

A set J = {1, . . . , =} of jobs is given. Each job 9 2 J is described by an attribute
0 9 2 A, a size B 9 2 N, an earliest start time (or release date) 4C 9 2 N, and a latest end
time (or due date) ;C 9 2 N. The processing of a job is constrained by its minimal and
maximal processing times (<8=C 9 and <0GC 9 2 N, respectively). Additionally, jobs have
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eligibility constraints, limiting their assignment to specific machines (indicated with the
set E 9 ✓M).

Setup times and costs are incurred between consecutive batches on the same machine
and depend upon the attributes of the batches (attributes of jobs in the batch). They are
indicated with two (0⇥0)-matrices of setup times BC = (BC (08 , 0 9 ))108 ,0 90 and of setup
costs B2 = (B2(08 , 0 9 ))108 ,0 90 are given to denote the setup times (costs) incurred
between a batch with attribute 08 and a subsequent one with attribute 0 9 .

The OSP aims to establish a feasible assignment of jobs to ovens, grouping them
into batches, and to determine the schedule of batches on the ovens. A feasible batch
construction and schedule must respect the following rules:

– Attribute homogeneity: Jobs in the same batch must share the attribute.
– Release date: A batch cannot start processing until the release date of the latest-

released job assigned to it.
– Processing time: The processing time of a batch must be longer than or equal to

the minimal processing time and shorter than or equal to the maximal processing
time of any job in the batch. Jobs in the same batch start and finish processing at
the same time and job-preemption is not allowed.

– Setup time: Batches on the same machine may not overlap, and setup times between
consecutive batches need to be respected.

– Machine eligibility: Jobs can only be assigned to one of their eligible machines.
– Machine availability: For every batch, the entire processing time and the preceding

setup time must be scheduled within a single availability interval.
– Machine capacity: The size of each batch cannot exceed the capacity of the machine

it is assigned to.
The objective of the OSP is threefold: to minimize the cumulative batch processing

time (?), the number of tardy jobs (C), and the cumulative setup costs (B2). Given a
solution to the OSP, the three objective components are formally defined as follows:

? =
’
<2M

’
12B<

%<,1, C =
���
9 2 J : ⇠ 9 > ;C 9

 �� and B2 =
’
<2M

’
12B<

B2<,1

where B< is the set of batches of machine < 2 M that composes the solution. The
processing time of batch 1 2 B< on machine < 2M is indicated with %<,1. The total
tardiness is calculated as the number of jobs 9 2 J for which the completion time ⇠ 9
is greater than their due date ;C 9 in the given solution. The setup cost of batch 1 on
machine< is denoted by B2<,1. Each component is then normalized and aggregated in a
weighted sum to account for different real-world scenarios. The weights used throughout
this paper are set as follows: F? = 4, FC = 100, and FB2 = 1 (these are also normalized
by their sum, see Use Case 1 by [10]). To illustrate the problem, 6 reports an example
instance for the OSP.

2.1 Solution methods for the OSP

In the literature, the OSP has been solved with a construction heuristic [10], exact
methods [10], and a SA algorithm [11] which we very briefly describe here.
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The construction heuristic introduced to solve the OSP [10] is a dispatching rule that
prioritizes jobs based on their release dates and then on their due dates. The algorithm
starts at time 0. At each time step, it compiles the list of currently available machines
and currently released jobs that have not yet been scheduled. The algorithm then selects
the job with the earliest due date from this pool and greedily assigns it to one of the
eligible machines. Once a job is scheduled, other available jobs are included in the same
batch, provided that the job’s attribute, processing time, and the machine’s capacity
allow it. If no job can be scheduled, the time is incremented by one, and the process is
repeated. This heuristic has been used to warm-start the exact methods with some of the
solvers [10] and as an initial solution for the SA approach [11].

Two exact modeling approaches which were formulated as CP and ILP models were
proposed by [10]. The first approach is based on batch positions: each job is assigned to
one of the possible batches, which are uniquely characterized by their machine and the
batch position on this machine. The constraints are formulated on the level of batches
and an optimal schedule of the batches needs to be found. The second uses a unique
representative job for each batch and seeks an optimal schedule for these jobs. These
two modeling approaches are implemented both in the high-level solver-independent
modeling language MiniZinc [22] and using interval variables in the Optimization
Programming Language (OPL) [5] used by CP Optimizer. Moreover, different state-of-
the-art solvers, search strategies, and a warm-start approach leveraging the construction
heuristic were employed. Ultimately, the best results were achieved with CP Optimizer
and the OPL-model using representative jobs as well as with Gurobi and the MiniZinc-
model with batch positions. In what follows, we will refer to these two solution methods
as “cpopt” and “mzn-gurobi” (as well as “cpopt-WS” and “mzn-gurobi-WS” for the
variants with warmstart).

A SA algorithm for the OSP was proposed by [11]. In this algorithm, a solution
to the OSP is represented by the assignments of jobs to ovens and by the processing
order of the jobs on their respective machines. The schedule of the batches on the ovens
is then deterministically constructed from this representation. The initial solution is
retrieved from the construction heuristic previously presented. The algorithm relies on
four neighborhood-moves: the Swap Consecutive Batches (SCB) move, which swaps
consecutive batches on the same machine; the Insert Batch (IB) move, which inserts a
given batch in a new position on the same machine; the Move Job to Existing Batch
(MJEB) move, which inserts a job 9 in an existing batch; the Move Job to New Batch
(MJNB) move, which inserts a job in a newly created batch. In the original work
by [11], SA was proposed with a preliminary manual tuning, whereas we fine-tuned its
parameters for this work.

3 Lower bounds on the optimal solution cost

In this section, we describe a procedure to calculate lower bounds on the optimal solution
cost for a given instance of the OSP. Our main focus lies in bounding the number of
batches required in any feasible solution. At the same time, we derive bounds on the
cumulative batch processing time. These lower bounds serve as a basis for deriving
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lower bounds on the cumulative setup costs. Finally, we provide a brief discussion on
the number of tardy jobs.

3.1 Minimum number of batches required and minimal cumulative batch
processing time

Since jobs can only be combined in a batch if they share the same attribute, bounds
on the number of batches required are calculated independently for all attributes. For a
given attribute A 2 A, we denote by 1A the number of batches in a feasible solution and
by ?A the minimal cumulative processing time of batches.

Bound based on machine capacities and job sizes. Due to the capacity constraints of
machines, a simple bound on the number of batches required is

1A �
⇠ Õ

92J:0 9=A B 9

max
<2M{2<}

⇡
, (1)

as stated by [7]. This corresponds to the minimal number of batches required if we
assume that jobs can be split into smaller jobs of unit size and that all jobs can be
scheduled on the machine with the largest machine capacity.

This bound can be tightened by distinguishing between “large” and “small” jobs (in
a similar fashion as [1,12,13]). Large jobs are those jobs that are so large that they cannot
accommodate any other jobs in the same batch and thus need to be processed in a batch
of their own. All other jobs are referred to as small jobs. For a given attribute A , the sets
of large jobs �;

A
and small jobs �B

A
with attribute A are thus defined as follows:

�
;

A
=

⇢
9 2 J : 0 9 = A, B 9 + B8 > max

<2E 9
(2<) 88 2 J with 8 < 9 and 08 = A

�
,

�
B

A
=

�
9 2 J : 0 9 = A

 
\ �;

A

Instead of the bound in equation (1), we thus have the tighter bound:

1A � |�;
A
| +

⇠ Õ
92�BA B 9

max
<2M{2<}

⇡
. (2)

In the following, we refine these bounds from the literature by considering machine
eligibility and compatibility of processing times.

Refinement of the bound for small jobs based on machine eligibility. Considering
the small jobs of attribute A 2 A, we further distinguish them between those that can
be processed on several machines and those with a single eligible machine. Given a
machine 8 2M, we use the following notation:

1A ,8 =

Õ
92�BA :E 9={8} B 9

28

, and 20?8 = (d1A ,8e � 1A ,8) · 28

i.e., d1A ,8e is the minimal number of batches with small jobs that need to be processed
on machine 8 and 20?8 is the total remaining capacity in these batches.

To schedule the small jobs of attribute A , we proceed as follows:
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– All small jobs that need to be processed on a specific machine are scheduled on this
machine.

– The remaining small jobs are used to fill up the previously created batches.
– If there are still jobs left, we assume that they can be split into unit-size jobs and can

be scheduled on the machine with maximal capacity, creating 1⇤
A

additional batches.
The bound in equation (2) can then be tightened as follows:

1A � 1⇢A = |�;
A
| +

’
82M
d1A ,8e +

&
max (0,Õ

92�BA : | E 9 |>1 B 9 �
Õ
82M 20?8)

max
<2M{2<}

'

|                                                {z                                                }
=1⇤A

(3)

In order to calculate a lower bound on the cumulative batch processing time ?A of
these batches, note that all large jobs are processed in batches of their own which run
for their respective minimal processing times. Thus

?A =
’
92�;A

<8=C 9 + ?⇢A , (4)

where ?
⇢

A
denotes the minimal cumulative processing time of batches consisting of

small jobs with attribute A . A bound for ?⇢
A

can be calculated as follows:
– For every machine 8 with 1A ,8 > 0, create the collection of minimal processing times

of small jobs that need to be processed on 8; create the sum of the d1A ,8e smallest
elements from this collection.

– From the collection of minimal processing times of small jobs that can be processed
on multiple machines, create the sum of the 1⇤

A
smallest elements.

– Among all small jobs, pick the one with the largest minimal processing time. The
batch containing this job will necessarily have this job’s minimal processing time.
In the previous two sums, one can thus replace the overall largest processing time
with this value.

Alternative refinement of the bound for small jobs based on compatible job pro-
cessing times. Two jobs 8 and 9 with respective minimal and maximal processing times
<8=C8 ,<8=C 9 and <0GC8 ,<0GC 9 may only be combined in a batch if the intervals of their
processing times have a non-empty intersection:

[<8=C8 ,<0GC8] \ [<8=C 9 ,<0GC 9 ] < ;. (5)

This compatibility relation between jobs can be represented with the help of a compat-
ibility graph ⌧ = (+ , ⇢), where + is the set of all jobs I and (8, 9) 2 ⇢ if and only if
the jobs 8 and 9 have compatible processing times. In this graph, a batch forms a (not
necessarily maximal) clique. The problem of solving an OSP instance with unit-sized
jobs and a single machine with capacity 2 is thus equivalent to covering the nodes of the
compatibility graph with the smallest number of cliques with size no larger than 2.

This problem is NP-complete for arbitrary graphs, but solvable in polynomial time
for interval graphs. A simple greedy algorithm is provided by [3] and referred to as the
algorithm GAC (greedy algorithm with compatibility). By adapting the order in which
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jobs are processed by the GAC algorithm, we obtain an algorithm that minimizes both
the number of batches and the cumulative batch processing time. We call this algorithm
GAC+.

Algorithm GAC+: Consider the jobs in non-increasing order 91, 92, . . . , 9= of their
minimal processing times <8=C 9 , breaking ties arbitrarily. Construct one batch per it-
eration until all jobs have been placed into batches. In iteration 8, open a new batch
⌫8 and label it with the first job 9

⇤ that has not yet been placed in a batch. Starting
with 9⇤ = [<8=C 9⇤ ,<0GC 9⇤ ], place into ⌫8 the first 2 not yet scheduled jobs 9 for which
<8=C 9⇤ 2 [<8=C 9 ,<0GC 9 ].

For a set J of jobs with arbitrary job sizes, let ⌧�⇠1(J , 2) denote the number
of batches returned by the GAC+ algorithm when replacing every job 9 2 J with
B 9 identical copies of unit size jobs. Similarly, let ⌧�⇠?(J , 2) denote the minimal
processing time returned by the GAC+ algorithm for this instance. With this notation,
we obtain the following bounds:

1A � |�;
A
| + 1⇠

A
, with 1⇠

A
= ⌧�⇠1(�B

A
, max
<2M

{2<}), (6)

?A �
’
92�;A

<8=C 9 + ?⇠A , with ?⇠
A
= ⌧�⇠?(�B

A
, max
<2M

{2<}). (7)

For a formal statement and proof of this result, see Section 6 of the appendix.

Overall bound on the number of batches and the minimal cumulative processing
time. Combining the previously established bounds, we obtain:

1 �
0’
A=1

( |�;
A
| + max(1⇢

A
, 1
⇠

A
)) and ? �

0’
A=1

(
’
92�;A

<8=C 9 + max(?⇢
A
, ?
⇠

A
)),

where 1⇢
A

is defined in equation (3) and 1⇠
A

in equation (6), the procedure to calculate
?
⇢

A
is described right after equation (4) and ?⇠

A
is defined in equation 7.

3.2 Bounds on the other components of the objective function

Setup costs. If we assume that the setup costs before batches of a given attribute are
always minimal, we obtain the following bound on the setup costs:

B2 �
0’
A=1

1A · min
B2{1,...,0}

{B2(B, A)}. (8)

A similar bound can be derived assuming that the setup costs after batches are always
minimal. For this case, we include initial setup costs for all machines to which batches are
scheduled and ignore the last batch on every machine. Since a prior it is not known which
machines are used in a schedule, we create the list setup_costs as follows. For every
attribute A, we add 1A copies of min

B2{1,...,0} {B2(A, B)} to setup_costs. Moreover, for
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every machine <, we add the element min
B2{1,...,0} {B2(80<, B)} to setup_costs. The

list is then sorted in non-decreasing order and the sum of the first 1 elements is taken:

B2 �
1’
8=1
setup_costs(8). (9)

Altogether, we have the following lower bound on the setup costs

B2 � max

 
0’
A=1

1A · min
B2{1,...,0}

{B2(B, A)},
1’
8=1
setup_costs(8)

!
. (10)

Note that it is impossible to obtain a lower bound on the setup costs by arranging
the minimum number of batches per attribute (as calculated previously) in an order that
minimizes the cumulative setup costs. Indeed, if the matrix of setup costs does not fulfill
the triangle inequality, it can be advantageous to introduce additional batches if the sole
objective is to reduce setup costs.

Number of tardy jobs. Regarding the number of tardy jobs, direct inference from the
instance itself may be limited. However, we can obtain a lower bound on the number
of tardy jobs by independently scheduling each job in a batch on its own on the first
available machine and computing the completion time. Any job finishing after its latest
end date is necessarily tardy in every solution.

4 Including lower bounds in solution methods

A recommended practice to build efficient exact models is to tightly restrict and bound
the domain of variables (as suggested, for instance, by the MiniZinc guide on efficient
modeling practices3). By employing tighter variable bounds, algorithmic efficiency
can be significantly enhanced, facilitating faster convergence to optimal solutions or
the identification of unfeasible regions. When solving the OSP with one of the exact
methods, the lower bounds derived in Section 3 can be calculated in a preprocessing
step and can then be provided to the model as part of the input data. The range of the
variables corresponding to the individual objective components as well as the variable
for the aggregated objective function can thus be bounded from below. Moreover, the
aggregated objective value of the solution delivered by the construction heuristic can be
used to bound the range of the objective function from above.

Problem-specific lower bounds can also have practical applications in metaheuristic
algorithms, e.g., in SA. Lower bounds can be used to guide the search, e.g., as part of the
termination criterion. This strategy allows for early interruption of the process, sparing
computational resources while still achieving satisfactory solution quality

5 Experimental evaluation

In this experimental evaluation, we aim to analyze the quality of the theoretically derived
lower bounds and their practical usefulness in helping to solve the OSP.

3see https://www.minizinc.org/doc-2.5.5/en/efficient.html

https://www.minizinc.org/doc-2.5.5/en/efficient.html
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5.1 Benchmark instances

We consider the 80 benchmark instances by [9], which differ per number of jobs (10,
25, 50, or 100), number of machines (2 or 5), and number of attributes (2 or 5).

Moreover, we consider 40 new instances featuring a larger number of jobs (250 or
500) to reflect real-world scenarios better. This new set is generated using the specifica-
tions of the random instance generator provided by [8]. The instances can be retrieved
from the public public GitHub repository https://github.com/iolab-uniud/osp-ls/.

For tuning purposes (i.e., when using SA), we generate 25 additional instances with
similar characteristics as the initial benchmark set.

5.2 Experimental setup

We consider the following methods for the OSP:
– Problem-specific lower bounds (presented in 3): For the instances we consider, the

bounds are calculated in 2.9 seconds on average (with a standard deviation of 6.9
s).

– Construction heuristic (proposed by [10], see 2.1): Since the solution is determin-
istically constructed, there is no need to execute the algorithm more than once. For
the instance we consider, the solutions are retrieved in 0.2 seconds on average (with
a standard deviation of 0.4 s).

– Best performing exact methods (proposed by [10], see 2.1): We refer to the
methods as “cpopt” (interval variable model with representative jobs solved with
CP Optimizer) and “mzn-gurobi” (MiniZinc-model with batch positions solved
with Gurobi), as well as “cpopt-WS” and “mzn-gurobi-WS” for the variants with
warm-start. Each method is run with a timeout of 1 hour per instance.

– Local search approach with SA(proposed by [11], see 2.1): The algorithm is tuned
using automated parameter tuning with irace [14]. To account for the stochastic
components of SA, we execute the algorithm 10 times per instance with a timeout
of 6 minutes. Every 2 seconds we record the overall cost and the single objective
components of the best solution encountered so far.

Details regarding the implementation, the tuned parameters of the SA and the hardware
can be found in Section 6 of the appendix.

5.3 Lower bounds quality

Our objective is to assess the tightness of the calculated lower bounds. We examine the
bound on the overall cost (>1 9) as well as the bounds on its three components individually
(C, ?, and B2). For the smaller benchmark instances with up to 100 jobs and the aggregated
objection function, we refer to the best results per instance obtained by [10] with their
proposed exact methods. For the larger benchmark instances with 250 or 500 jobs, we
rerun the best-performing exact methods (“mzn-gurobi” and “mzn-gurobi-WS” as well
as “cpopt” and “cpopt-WS”) and retrieve the best result per instance. Moreover, we run
the exact models with the task of optimizing just one of the three components for the
entire benchmark set. In our analysis of the lower bounds, we differentiate between those

https://github.com/iolab-uniud/osp-ls/
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instances and objectives where an optimal solution cost is known and those where we
do not know the optimum.

For those instances and objectives where the optimum solution is known, given an
instance 8, we compute the relative gap(8) between the calculated lower bound 1(8) and
the optimal cost B(8); specifically gap(8) = 100 · (B(8) � 1(8))/B(8). Results show the
general tendency that the larger the instances, the smaller the gap (see 2). Concerning
the individual components, we observe that most room for improvement is left for the
simple bounds for B2 and C. Nonetheless, the gap for B2 is less than 25% for more than
half of the instances and the gap for C is less than 10% for 74% of the instances. For the
cumulative processing times, the gap is less than 25% for 88% of instances and less than
10% for 61%. The results are promising, as they give reason to hope that the bounds are
relatively tight for instances where the optimum is not known as well.

Whenever the optimal solution value is not known, we compare the problem-specific
lower bounds with the lower bounds retrieved by CP Optimizer and Gurobi (specifi-
cally, “cpopt”, “cpopt-WS”, “mzn-gurobi”, and “mzn-gurobi-WS”) and retrieve the best,
i.e., largest, lower bound found per instance. For each objective, we count how often
the calculated lower bounds are better, worse, or equal to the best dual bounds found by
the exact methods, see 1. The results show that both for the overall cost and its com-
ponents, the calculated problem-specific lower bounds are better than those provided
by any of the exact methods in the majority of the instances. The dominance of the
problem-specific lower bounds is particularly clear for the larger instances with 100 jobs
or more. Interestingly, this observation holds even for the objective components “setup
costs” (problem-specific bounds are better or equally good in 2/3 of the instances) and
“number of tardy jobs” (better or equally good results in 94 % of the instances) for which
the calculated bounds are very simple.

Moreover, we investigated the gap between the calculated lower bounds and the upper
bounds provided by the construction heuristic (see 2.1). For a total of 57 instances, this
gap is less than 10% (see 6 for details).
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Fig. 2: Gap[%] between the known optimum and the calculated lower bounds.
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Table 1: Comparison of the quality of calculated problem-specific (“calc.”) and best
solver lower bounds (“solv.”). We consider only those instances for which no optimal
solution is known. The label “calc.” refers to the number of instances where the calculated
bounds are better, “solv.” to those where the solver bounds are better and “equ.” to those
where the bounds are equal.

>1 9 C ? B2

calc. solv. equ. calc. solv. equ. calc. solv. equ. calc. solv. equ.
= # # # # # # # # # # # #

25 0 4 0 0 0 0 1 0 0 1 0 0
50 7 12 0 0 6 2 10 6 0 4 7 2
100 16 3 0 1 6 0 18 1 0 15 1 2
250 20 0 0 10 1 1 20 0 0 18 0 0
500 20 0 0 10 0 2 20 0 0 18 0 0

all 63 19 0 21 13 5 69 7 0 56 8 4

n=10
n=25
n=50

n=100
n=250
n=500

0 5 10 15 20
Instances [#]

g = 0% 0% < g ≤ 1% 1% < g ≤ 5% g > 5%

Fig. 3: Gap[%] between the best solution found and the best lower bounds.

5.4 Measuring solution quality

In this section, we use the lower bounds to assess the solution quality and benchmark
the best-known solutions for the OSP with the best lower bounds. On the one hand, we
consider the best solution found for each instance by the methods described in 2.1. On
the other hand, we consider the best lower bound per instance among the calculated
bounds and the ones retrieved by the exact methods. Then we calculate the relative gap
between the best solution and the best lower bound per instance. Results are shown in
3. Almost all small instances with 25 or 50 jobs could be solved optimally. For larger
instances, the solution methods find very good solutions (with a relative gap[%]  1%)
for roughly half the instances. For most of the remaining instances, the gap is larger
than 5%, showing that there is still room for improvement–both in terms of the solution
quality and in terms of the lower bound quality.

5.5 Application of lower bounds

Exact methods We aim to understand whether using the calculated problem-specific
lower bounds allows the exact methods to improve their results. As described in Sec-
tion 4, we perform experiments where the objective function and its components are
bounded from below by the calculated lower bounds. Moreover, we perform experiments
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additionally supplying the solvers with the upper bound on the objective obtained from
the greedy construction heuristic.

2 presents results categorized by methods and types of bounds included; it displays:
the number of instances for which the optimal solution, when known, was reached
(“optimal”); the number of instances for which a feasible solution was found (“solved”),
the number of instances for which the method could prove optimality (“proven opt”);
the number of instances for which the best solution was found (“best”); the number of
instances for which the best lower bound could be found (“best lower bound”); the average
run time (“avg rt”) and its standard deviation (“std rt”) in seconds. Note that for the
number of best solutions found and of best lower bounds found, the comparison is made
among a single solution method, i.e., comparing results obtained when no non-trivial
bounds are provided, when lower bound and when lower and upper bounds are provided.
The statistics regarding runtime are calculated for the subset of instances for which
the respective solution method could prove optimality when it was not provided with
bounds (meaning that instances for which the time-out was reached are not included).
The majority of solution methods, namely “mzn-gurobi”, “cpopt” and “cpopt-WS”,
demonstrate greatly improved performance and solution quality when lower bounds are
incorporated. For “mzn-gurobi-WS”4, the contribution of the bounds is less clear: fewer
instances are solved (optimally), but better solutions and better lower bounds can be
found. The inclusion of upper bounds is not always advantageous for the exact methods,
meaning that the solvers were not capable of finding a solution that was at least as
good as the greedy solution within a time limit of 1 hour. For all analyzed solution
methods, the presence of bounds facilitates the discovery of improved lower bounds by
the commercial solvers, thus contributing to closing the optimality gap.

Table 2: Comparison of the results obtained with exact methods with and without the
inclusion of bounds. Best results per solution method and performance parameter are
highlighted in bold font. Numbers in brackets indicate the improvement obtained by
supplying the respective solution methods with bounds.

solution bounds incl. optimal solved proven opt best best LB avg rt std rt
method in model # # # # # (in s) (in s)

mzn-gurobi none 40 64 31 51 41 429.5 860.6
LB 41 (+1) 78 (+14) 36 (+5) 62 (+11) 62 (+21) 189.9 387.6
LB + UB 40 (+0) 73 (+9) 35 (+4) 64 (+13) 55 (+14) 235.8 542.0

mzn-gurobi none 41 89 34 57 40 764.3 1217.9
-WS LB 40 (-1) 87 (-2) 34 (+0) 68 (+11) 65 (+25) 505.4 1069.8

LB + UB 41 (+0) 84 (-5) 34 (+0) 65 (+8) 70 (+30) 493.9 1083.2

cpopt none 39 114 28 73 28 18.4 34.1
LB 40 (+1) 114 (+0) 33 (+5) 79 (+6) 118 (+90) 17.8 46.4
LB + UB 39 (+0) 85 (-29) 33 (+5) 57 (-16) 110 (+82) 17.9 43.1

cpopt-WS none 38 120 28 70 28 17.6 30.0
LB 40 (+2) 120 (+0) 33 (+5) 81 (+11) 118 (+90) 15.9 31.7
LB + UB 40 (+2) 120 (+0) 33 (+5) 83 (+13) 117 (+89) 19.9 42.9

4The warm-start data provided to Gurobi only contains values for a subset of the decision
variables. The solver thus needs to complete the partial solution and, for “mzn-gurobi-WS’, fails
to do so for many large instances.
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3 offers a comprehensive comparison of overall best results. The inclusion of bounds
enabled the methods to deliver three new optimality proofs and to find 23 better solutions.
Additionally, the computational time reduces when bounds are utilized compared to
when they are not.

Table 3: Overall comparison of the best results per instance achieved with exact methods
without the inclusion of bounds and with the inclusion of bounds.

bounds optimal solved proven opt best best lower bound avg rt std rt
included # # # # # (in s) (in s)

no 41 120 38 76 42 486.8 1075.6
yes 41 (+0) 120 (+0) 41 (+3) 99 (+23) 116 (+74) 107.6 256.9

Local search Lower bounds provide a means to assess whether it is feasible to halt
the search before reaching the termination criterion – in our case, the timeout. We aim
to discern under which circumstances this is viable and how much time is necessary.
Considering the overall cost, for 50 out of 120 instances, the gap[%] is lower than 1%
(average time required 15.52 ± 39.85 s); for 60, the gap[%] is lower than 5% (average
time required 3.86 ± 20.21 s), and for 67, it is lower than 10% (average time required
11.13± 34.92 s). This means that for roughly half of the benchmark instances, the search
could be terminated early, delivering a solution of good quality. It is worth pointing out
that this is merit also of a demonstrably good initial solution (see 6). 4 reports the
distribution of minimum time required by SA to achieve such results.

GAP ≤ 1% GAP ≤ 5% GAP ≤ 10%
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Fig. 4: Minimum time required by SA to reach a given gap[%] w.r.t. >1 9 .

6 Conclusion

In this study, we introduced a procedure for calculating theoretical lower bounds for the
OSP which can be calculated within a couple of seconds even for large instances. The
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experimental evaluation demonstrated their quality and practical utility when incorpo-
rated into exact methods or LS approaches. Our bounds can help to find better solutions,
to deliver more optimality proofs, and to find high-quality solutions in a shorter time.

Notably, some of the bounds we developed are relatively simple, in particular those
concerning job tardiness. This suggests that there is potential for further enhancements
by refining these lower bounds with more sophisticated methods. Therefore, future
extensions will focus on improving the presented bounds. Additionally, we aim to explore
adaptive local search techniques, wherein neighborhood probabilities dynamically adjust
based on the proximity to the lower bounds. Moreover, investigating alternative use cases,
such as employing different weight sets on the objective function, may offer valuable
insights.

Replicability The software toolbox can be retrieved from the public GitHub repository
https://github.com/marielouiselackner/OvenSchedulingCLI, and the new benchmark
instances are available at https://github.com/iolab-uniud/osp-ls/.
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Appendix A – Example of an OSP Instance.

To better exemplify the problem, let us consider the following randomly created instance
consisting of 10 jobs (= = 10), 2 machines (: = 2), and 2 attributes (0 = 2). It presents
the following characteristics:

< "1 "2
2< 18 20
80< 1 2
[0B, 04] [21,250] [103,259]

BC =
✓

0 0
3 8

◆
B2 =

✓
6 8
10 10

◆

9 1 2 3 4 5 6 7 8 9 10
E 9 "1 "1 "1 "1 "1 "1 "1

"2 "2 "2 "2 "2 "2 "2 "2
4C 9 2 3 8 1 39 41 40 31 27 16
;C 9 16 20 43 24 55 64 56 89 58 27
<8=C 9 11 10 19 19 10 19 11 50 19 11
<0GC 9 11 50 19 19 50 50 50 50 19 50
B 9 18 16 17 2 6 19 11 11 4 14
0 9 2 2 2 1 2 2 2 2 1 1

5 reports a possible solution to such an instance in the form of a Gantt Chart. The
running time of the oven is ? = 158, the number of tardy jobs is C = 8, and the setup costs
amount to B2 = 72. This solution is optimal when setting the weights in the objective
function as F? = 4, FC = 100, and FB2 = 1.

0 50 100 150 200 250

M1

M2

Scheduling Horizon

6 9,10 3

44 5,7 8 1 2unavail. unavail.

unavail. unavail.

Fig. 5: Gantt chart of a solution of the OSP for an instance with 10 jobs. The label
of each bar represents the jobs processed in the batch. Unavailabilities (“unavail.”) are
reported in gray. Batches with attribute 1 are colored in green, whereas those referring
to attribute 2 are colored in magenta.

Appendix B – Formal statement and proof of the correctness of the
GAC-bounds described in Section 3.1

In the following, we formulate the bounds described in the Section entitled Alternative
refinement of the bound for small jobs based on compatible job processing times (starting
on page 170) more formally and prove the correctness of the algorithm GAC+.

First, let us recall the compatibility requirement expressed in equation (5). Two
jobs 8 and 9 with respective minimal and maximal processing times <8=C8 ,<8=C 9 and
<0GC8 ,<0GC 9 may only be combined in a batch if the intervals of their processing times
have a non-empty intersection:

[<8=C8 ,<0GC8] \ [<8=C 9 ,<0GC 9 ] < ;.
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Now let us consider the following special case of the OSP:

OSP*: Given a set of jobs I of unit size defined by their minimal and maximal
processing times, i.e. 9 = [<8=C 9 ,<0GC 9 ] for all 9 2 I, and a single machine
with capacity 2 2 N, how many batches do we need at least in order to process
all jobs if jobs can only be processed in the same batch if the compatibility
condition (5) is fulfilled?

Several variants of this problem have been studied in the literature, e.g. by Finke et
al. [3]; the variant that we are interested in corresponds to the problem (P2) there.
Solving the problem OSP* will allow us to obtain lower bounds for the OSP: Indeed,
as in equation (1), we obtain lower bounds on the number of batches required and their
processing times if we assume that jobs can be split into smaller jobs of unit size and
that all jobs can be scheduled on the machine with largest machine capacity.

As stated in 3, equation (5) between jobs can be represented with the help of a
compatibility graph ⌧ = (+ , ⇢), where + is the set of all jobs I and (8, 9) 2 ⇢ if
and only if the jobs 8 and 9 have compatible processing times. In this graph, a batch
forms a (not necessarily maximal) clique. The problem of solving an OSP instance with
unit-sized jobs and a single machine with capacity 2 is thus equivalent to covering the
nodes of the compatibility graph with the smallest number of cliques with size no larger
than 2.

A simple greedy algorithm to solve this problem is provided by [3] and referred to
as the algorithm GAC (greedy algorithm with compatibility). By adapting the order in
which jobs are processed by the GAC algorithm, we obtain an algorithm that minimizes
both the number of batches and the cumulative batch processing time. We call this
algorithm GAC+.

Algorithm GAC+. Consider the set of jobs I in non-increasing order 91, 92, . . . , 9=
of their minimal processing times <8=C 9 , breaking ties arbitrarily. Construct one batch
per iteration until all jobs have been placed into batches. In iteration 8, open a new batch
⌫8 and label it with the first job 9

⇤ that has not yet been placed in a batch. Starting
with 9⇤ = [<8=C 9⇤ ,<0GC 9⇤ ], place into ⌫8 the first 2 not yet scheduled jobs 9 for which
<8=C 9⇤ 2 [<8=C 9 ,<0GC 9 ] (or all of them if there are fewer than 2).

For a set I of unit size jobs and a maximum batch size 2 2 N, we denote by
⌧�⇠1(I, 2) the number of batches returned by the GAC+ algorithm above. Similarly,
let ⌧�⇠?(I, 2) denote the minimal processing time returned by the GAC+ algorithm
for this instance.

Theorem 1. For any given set of unit size jobs I and for any given constant 2 2 N,
Algorithm GAC+ solves the problem OSP*, i.e., ⌧�⇠1(I, 2) is the minimum number
of batches required under the condition that a batch may not contain more than 2 jobs.
Moreover, the cumulative batch processing time ⌧�⇠?(I, 2) is minimal.

By slight abuse of notation, for a set J of jobs with arbitrary job sizes, let
⌧�⇠1(J , 2) denote the number of batches returned by the GAC+ algorithm when
replacing every job 9 2 J with B 9 identical copies of unit size jobs. Similarly, let
⌧�⇠?(J , 2) denote the minimal processing time returned by the GAC+ algorithm for
this instance. With this notation, Theorem 1 yields the bounds reported in (7).
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Proof (of Theorem 1). We follow the proof of Theorem 4 in [3], extending it to include
the minimization of the cumulative batch processing time and adapting it to our variant
of the algorithm. The proof is by induction over the number of jobs and the induction
start with a single job is trivial.

Let us start with a simple observation about the minimum number of batches and
the minimal batch processing time. For this, let 1(I, 2) denote the minimum number of
batches required to schedule all jobs inI under the condition that a batch may not contain
more than 2 jobs. Similarly, let ?(I, 2) denote the minimal cumulative batch processing
time in any schedule of all jobs in I. Then these two functions are monotonous in I,
i.e.:

1(I, 2) � 1(I \ { 9}, 2)
and ?(I, 2) � ?(I \ { 9}, 2), for every 9 2 I.

(11)

For the induction step, letB = (⌫1, ⌫2, . . . , ⌫1) be a sequence of batches constructed
by the algorithm GAC+ for I, ⌫1 being the first batch constructed by the algorithm and
? 2 N being the cumulative batch processing time of B. Let the label of ⌫1 be the job
8 = [<8=C8 ,<0GC8], i.e., <8=C8 is maximal among the minimal processing times and the
processing time of ⌫1 is equal to<8=C8 . For the set of jobsI\⌫1, the algorithm constructs
the batch sequence ⌫2, . . . , ⌫1 (see the definition of GAC+). By the induction hypothesis
we know that ⌫2, . . . , ⌫1 is optimal for I \ ⌫1, i.e., 1(I \ ⌫1, 2) = |B| � 1 = 1 � 1 and
?(I \ ⌫1, 2) = ? � <8=C8 . It thus suffices to show that there exists a batch sequence of
minimal length and with minimal batch processing time that contains the batch ⌫1.

Let $1 be the batch containing 8 in an optimal sequence of batches O and let us
choose O such that the size of the intersection |$1 \ ⌫1 | is maximal. We will prove that
$1 = ⌫1.

First note that 8 2 $1 implies that <8=C8 2 [<8=C 9 ,<0GC 9 ] for all jobs 9 2 $1:
<8=C 9  <8=C8 since <8=C8 is maximal and <8=C8  <0GC 9 since every job 9 2 $1 needs
to be compatible with 8. Thus the processing time of batch $1 is equal to <8=C8 .

We now distinguish two cases: |⌫1 | < 2 and |⌫1 | = 2, where 2 is the maximum batch
size. If |⌫1 | < 2, the batch ⌫1 contains all neighbors of 8 in the compatibility graph
⌧ corresponding to the set of jobs I. Since $1 is a clique containing 8, it follows that
$1 ✓ ⌫1. Then by monotonicity (as stated in equation (11)), we have

|B| � 1 = 1(I \ ⌫1, 2)  1(I \$1, 2) = |O| � 1
and ? � <8=C1 = ?(I \ ⌫1, 2)  ?(I \$1, 2) = ?(I, 2) � <8=C8 ,

which proves that B is optimal both in terms of the number of batches and in terms of
the cumulative processing time.

For the case |⌫1 | = 2, we assume towards a contradiction that there exists a job
9 = [<8=C 9 ,<0GC 9 ] 2 ⌫1 \ $1. This implies that there must also exist a job : =
[<8=C: ,<0GC:] 2 $1\⌫1. (As before,$1 ⇢ ⌫1 would imply thatB is optimal. However,
the job 9 could have been added to$1 without having an impact on the number of batches
or the batch processing time required by O. This however is a contradiction to the choice
of O). From the definition of the algorithm, we know that ⌫1 consists of the first 2 jobs
containing <8=C8 . Therefore, 9 < : and <8=C 9 � <8=C: . Moreover, as noted earlier, we
know that <8=C8 2 : = [<8=C: ,<0GC:] and thus [<8=C 9 ,<8=C8] ✓ : .
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We then define $01 B ($1 \ {:}) [ { 9} and redefine the batch $ 2 O that contains
9 as $0 B ($ \ { 9}) [ {:}. Both these batches fulfill the compatibility constraint for
the processing times: $01 does because <8=C8 is contained in 9 and in all jobs in $1
and $0 does because all jobs that are compatible with 9 are also compatible with : (If
job B is compatible with 9 , this means that B = [<8=CB ,<0GCB] \ [<8=C 9 ,<8=C8] < ;,
since <8=C8 is maximal among all minimal processing times. On the other hand, we
already noted that [<8=C 9 ,<8=C8] ✓ : and thus B \ : < ;, which means that B and : are
compatible.) As for the processing times of the batches, both batches$1 and$01 have the
processing time <8=C8 as they contain job 8. For the batch $0, we have replaced the job 8
with a job with smaller or equal processing time (<8=C8 � <8=C:). Thus the processing
time of batch $0 is smaller or equal to the batch processing time of $. We have thus
produced another optimal sequence of batches O0 = O \ {$1,$} [ {$01,$0}. However,
|$01 \ ⌫1 | > |$1 \ ⌫1 | which is in contradiction to the choice of O. This finishes the
proof. ut

Appendix C – Detailed example for the calculation of lower bounds

We consider the example instance described in 6 to exemplify the calculation of the
problem-specific lower bounds on the objective function as derived in Section 3.

The values of the lower bounds for the number of batches required and the cumulative
batch processing times are summarized in Table 4 on page 183. We explain their
calculation in what follows. The sets of large jobs are �;1 = ; and �;2 = {1, 2, 3, 6},
we thus need 4 batches for the large jobs of attribute 2 and none for attribute 1. The
processing times for large batches are given by the minimal processing times of the large
jobs and contribute 11 + 10 + 19 + 19 = 59 to the cumulative batch processing time.

For the processing time of small jobs, we exemplify the calculation of the bound
based on eligible machines for attribute 1 and the one of the bound based on compatible
processing times for attribute 2. For attribute 1, we have three small jobs (4, 9, and
10) of which job 4 can only be processed on machine 1 and job 9 only on machine 2.
Two different batches are thus required for these jobs. Since the cumulative remaining
machine capacity (2 · max{2<} � (B4 + B9) = 40 � (2 + 4) = 34) is sufficient to
accommodate job 10 with B10 = 14, these two batches suffice. In this case, the runtime
of the two batches is given by the minimal runtime of the two jobs 4 and 9, and is equal
to 38 in total. As for attribute 2, the small jobs are 5, 7, and 8. Their respective intervals
of possible processing times are [10, 50], [11, 50] and [50, 50]. To follow algorithm
GAC+, we sort the list of jobs in decreasing order of their minimal processing times:
(8, 7, 5). A first batch with a processing time of 50 is created for job 8. The remaining
capacity in this batch is 20 � 11 = 9 (assuming that it is assigned to the batch with
maximal capacity). We thus proceed in the list of jobs and add 9 of the 11 units of job 7
to this batch. For the remaining 2 units of job 7, a new batch with processing time 11 is
created. We can add the entire job 5 to this batch. In total, two batches with a cumulative
processing time of 61 are needed for the small jobs of attribute 2.

For the calculation of setup costs, equation (8) gives:

B2 � 11 · min
B

{B2(B, 1)} + 12 · min
B

{B2(B, 2)}
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= 2 · min(6, 10) + 6 · min(8, 10) = 60.

For equation (9), the list of minimal setup costs setup_costs contains minB{B2(1, B)} =
min(6, 8) three times (twice for attribute 1 and once for the initial state of machine 1)
and minB{B2(2, B)} = min(10, 10) seven times (six times for attribute 2 and once for
the initial state of machine 2). We take the 1 = 8 smallest values from this list and thus
have:

B2 �
8’
8=1
setup_costs(8) = 3 · 6 + 5 · 10 = 68.

We take the maximum of these two values and obtain that B2 � 68 for this instance.
Due to the given machine availability intervals for this instance, all jobs except jobs

5, 7, and 8 always finish late. Thus, the number of tardy jobs is � 7 in any feasible
solution.

The theoretical lower bound values are reported in Table 4.

Table 4: Lower bounds and optimal values for the number of batches, cumulative batch
processing time, setup costs, and tardiness for the example instance with 10 jobs.

number of batches batch processing time setup costs tardiness
(1) 1⇢A (3) 1⇠A (6) large jobs ?⇢A ?

⇠
A (7) (8) (9)

attribute 1 6 2 1 0 38 19 60 68 3 (jobs 4, 9, 10)
attribute 2 6 6 59 60 61 4 (jobs 1, 2, 3, 6)
lower bound 8 158 68 7
optimal values 8 158 72 8
gap (in %) 0 0 5.5 12.5

Using the weights and aggregating the lower bounds for three components of the
objective function, we obtain that:

obj � 4 · 158/18 + 68/10 + 100 · 7
10 · 105

⇡ 0.7066.

Considering the optimal solution for this instance presented in 6, the gap between
the calculated lower bounds and the optimal solution (C = 8, ? = 158, and B2 = 72) are
thus 0% for the runtime, 5.5% for the setup costs, and 12.5% for the number of tardy
jobs; the gap for the aggregated objective function is 11.7% (due to the high weight
given to tardy jobs).

Appendix D – Details concerning the experimental setup

We consider the theoretical lower bounds as presented in 3. The code is implemented
in C#. The experiments are executed on a machine featuring an Intel Core i7-1185G7
processor with 3.00GHz. Each run is executed on a single thread.

We consider the construction heuristic proposed by [10] (see 2.1). The solution
method is implemented in C++. The code is compiled with Clang++15. All experiments
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are executed on a machine featuring 2x Intel Xeon Platinum 8368 2.4GHz 38C, 8x64GB
RDIMM. Each run is executed on a single thread.

We consider the exact methods proposed by [10] (see 2.1). The “cpopt” is imple-
mented with CPLEX Studio 22.11, whereas “mzn-gurobi” uses Minizinc 2.8.2 Gurobi
10.0.1. All experiments are executed on a machine featuring 2x Intel Xeon CPU E5-2650
v4 (12 cores @ 2.20GHz, no hyperthreading).

We consider the SA proposed by [11] (see 2.1). The SA is implemented using
EasyLocal++, a C++ framework for LS algorithms [2]. The code is compiled with
Clang++15. All experiments are executed on a machine featuring 2x Intel Xeon Platinum
8368 2.4GHz 38C, 8x64GB RDIMM. Each algorithm is executed on a single thread. The
algorithm is tuned using irace (v.3) [14]. We assign irace a total budget of 25, 500
experiments. Details on the parameter ranges and their final values are reported in 5.

Table 5: Parameter configurations for the SA algorithm.
Param. Description Range Value

)
5

Final temperature. 0.001 – 0.01 0.004
U Cooling rate. 0.985 – 0.995 0.988
d Accepted move ratio. 0.05 – 0.7 0.309

?SCB Prob. of SCB move. 0 – 1 0.090
?IB Prob. of IB move. 0 – 1 0.293
?MJEB Prob. of MJEB move. 0 – 1 0.328
?MJNB Prob. of MJNB move. 0 – 1 0.289

Appendix E – Evaluation of the upper bounds provided by the
construction heuristic

It is important to note that if the construction heuristic successfully schedules all jobs,
as is the case for all our benchmark instances, the resulting solution is always feasible,
making the obtained solution cost an upper bound on the optimal solution cost.

We compute the relative bound gap between the calculated lower bound and the
cost of the solution generated by the greedy construction heuristic for each benchmark
instance (considering the overall cost). The results are shown in Figure 6. The construc-
tion heuristic hardly ever finds optimal solutions (it does so for a single out of the 120
benchmark instances) and often the gap is very large between this upper bound and the
calculated lower bound (the relative gap is nearly equal to 100% for a few instances).
Surprisingly however, for 37 instances across all sizes, the relative bound gap is less
than 1%, even for some of the large instances where no solver could provably find an
optimal solution. Moreover, for a total of 57 instances, the gap is less than 10%. This
suggests that within a short computation time (a maximum of 6 seconds, an average of
0.2 seconds), the construction heuristic together with the problem-specific lower bounds
can provide good estimates of the optimal solution cost for a significant portion of the
instance set, and rough estimates for nearly half of the instances.
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Fig. 6: Relative bound gap[%] between the upper bound found by the construction
heuristic and the calculated lower bound per instance considering the overall cost.
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Abstract. Creating more robust rosters that offer medium-term planning security
for employees is a desired goal in the public transportation sector. To tackle this
problem, we introduce a new approach in the context of tram driver scheduling
called time frame rostering. In this approach, instead of directly assigning shifts
to roster positions, time frames are first allocated to roster positions. These time
frames are intervals wide enough to accommodate a variety of shifts. The shift
assignment takes place only a few days before the actual workday. Thus, time frame
rosters provide medium-term planning security, as tram drivers are only assigned
shifts within their designated time frames. The goal of the time frame rostering
problem is then to optimally assign time frames to a roster such that several
constraints are met. In this paper, we formally define the time frame rostering
problem and provide a solver-independent model of the problem. Furthermore, we
compare two state-of-the-art solvers on real-world instances and demonstrate that
optimal or almost optimal solutions can be found in a reasonable amount of time.
Additionally, we verify these solutions by simulating absences and subsequent
shift assignment.

Keywords: Tram Driver Scheduling, Crew Rostering, Public Transport Schedul-
ing,

1 Introduction

Similar to other professions that operate in shifts, such as those in the medical field or
industrial manufacturing, the shifts of tram drivers are assigned to a rotating schedule
called a roster. Traditionally, this roster was created by assigning shifts to specific roster
positions either by hand or by using workforce scheduling algorithms [8]. However,
this approach proved inconvenient for tram drivers as well as rostering managers. A
roster is typically scheduled weeks or months in advance, hence it undergoes several
changes until the final shift assignment due to changes in shift plans, fluctuations in
staff headcount, and various other factors. Consequently, the literature covers methods
for constructing more robust rosters [6], [16], such as calculating the optimal amount of
reserve shifts [18], [9], as well as re-rostering methods [17]. These methods, however,
might still be inconvenient for tram drivers, as they potentially require a substantial
number of reserve shifts or the repeated reallocation of shifts, which deteriorates the
medium-term planning security for tram drivers.

As a consequence thereof, the idea emerged to introduce a time frame roster. In
this approach, instead of directly assigning shifts to specific roster positions, first, time
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frames are assigned to roster positions. These time frames are intervals wide enough
to accommodate a variety of shifts. The final shift assignment takes place only a few
days before the actual workday. At this stage, shifts replace the drivers’ time frames
where the shifts’ intervals fit within the time frames’ intervals. Thus, the time frame
roster provides medium-term planning security for tram drivers, as drivers will only be
assigned shifts within their designated time frames.

However, to the best of our knowledge, the existing literature does not provide a
formal definition or a formulated model of the time frame rostering problem that we
consider in this paper. Furthermore, an efficient method for optimally assigning time
frames to roster positions while considering specific criteria is currently unavailable. A
main criterion is, for example, that even if drivers are absent, it must still be possible to
assign shifts to drivers without violating their time frames.

The time frame rostering problem is a real-life combinatorial optimization problem
with specific requirements tailored to the operation of tram networks. The design of the
time frames requires a negotiation process and agreement between the employer and
employees. Therefore, for the purpose of this paper, the time frames and their specifica-
tions (start time, end time, type) are regarded as predetermined.

The main contributions of this paper are:

– We provide a formal problem definition and formulate a solver-independent model
of the time frame rostering problem.

– We publish real-world instances based on data provided by a public transportation
company.

– We empirically evaluate different exact solving methods using these real-world
instances and show that these are optimally solvable within 120 minutes.

– We demonstrate the feasibility of our solutions by simulating staff absences and
subsequent shift assignment.

This paper is part of a master’s thesis [5] that is currently under submission and is
expected to be published by September 2024.

The article is structured as follows: In the next section, we provide an overview of the
related work, followed by a high-level problem description in section 3. In section 4, we
precisely define the time frame rostering problem, and formulate a solver-independent
model. Subsequently, in section 5, we evaluate the model by solving real-world instances
using the linear solver Gurobi [7] and the constraint solver OR-Tools [14]. Finally, we
draw our conclusions in section 6.

2 Related Work

Tram driver scheduling can be considered a subset of crew scheduling, where each crew
consists of just a single member, the tram driver. The time frame rostering problem is
then a subset of the challenges encountered in crew planning or, generally, in workforce
scheduling. To the best of our knowledge, the time frame rostering problem defined in
this paper has not been addressed in the existing literature.
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Crew planning for (public) transportation typically comprises two primary stages: the
first stage involves crew scheduling, also known as shift design or shift/duty scheduling,
where shifts are designed based on a predetermined timetable. The second stage, referred
to as crew rostering, entails assigning these shifts to typically rotating or cyclical rosters
[8].

These two stages are also integral components of many workforce scheduling ap-
proaches in general [11]. While the two stages are often treated as separate optimization
problems [8], integrated approaches in crew planning with a single objective function
exist [1], [12]. On a more general level, solving the general employee scheduling prob-
lem, as demonstrated by Kletzander and Musliu [10], is also done by integrating several
stages.

Extensive literature explores how crew scheduling [8], crew rostering [8], and work-
force scheduling problems in general [2,4,15], can be addressed using mathematical pro-
gramming, constraint programming, answer-set programming, heuristics, metaheuris-
tics, and combinations thereof. In shift scheduling, mathematical programming is the
most popular approach [15]. Mathematical programming typically uses a set covering
formulation, introduced by Dantzig in 1954 [3]. Our model of the time frame rostering
problem is also based on such a formulation.

As mentioned in the introduction, a crew schedule, and particularly a crew roster,
undergoes several re-rosterings due to factors such as timetable changes, construction
sites, fluctuations in headcount, absences, and more. Thus, the literature also covers
methods to deal with uncertainty by constructing more robust rosters [6], [16], such
as introducing reserve duties [9], determining the optimal amount of reserve shifts
[18], as well as re-rostering methods [17]. However, the methodology of introducing
time frames and initially assigning these frames to rotating rosters based on the crew
schedule (shifts), followed by assigning shifts within these time frames, has not been
proposed to date. This time frame roster is more robust to changes than a typical shift
roster, as the shift assignment occurs at a later stage where many factors leading to
re-rostering are already known and accounted for in the assignment process.

3 Problem Description

This section provides a high-level problem description using a small sample roster. First,
we outline a conventional rostering process that resembles a real-world implementation
in a public transportation company. Second, we detail how our methodology diverges
from this traditional approach, highlighting the differences and innovations we introduce.

Conventional Approach Typically, tram driver scheduling begins with a set of shifts
containing all shifts for a week. Based on the size of this set, the demand for drivers and
their days off is calculated. A roster containing only the days off is created. Each driver
has either two specific consecutive days off or follows a rotational day off schedule,
resulting in eight different day off types. Tram drivers are assigned to different roster
weeks within their day off type and rotate through the roster weeks of their own type in
ascending order. Upon reaching the last week of their day off type they continue with
the first week of their type.
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After the creation of the day off schedule, the shifts are allocated. In the exemplary
shift roster shown in Table 1, each shift B represents a unique shift from the set that
contains all shifts for a week. Each shift includes specific details about the work location
(tram line), work hours (start time, breaks, end time), and whether it is a split shift
(with a several-hours-long break) or not. Since the size of the day off schedule is de-
termined by accounting for absences, among other things, there are considerably more
roster positions than shifts. These empty roster positions are filled with reserve shifts,
denoted as either A4 or A; in Table 1. Reserve shifts provide drivers with rough time
windows, typically distinguishing only between an early time window A4 (only shifts
starting before noon are allowed) and a late time window A; (only shifts starting after
noon are allowed). Drivers with reserve shifts receive notice of their actual shift or if
they are on stand-by only a few days before their scheduled workday.

day off type Mo Tu We Th Fr Sa Su
>0 off s s s s s off
>0 ... s s s s s ...
>1 off off s s s s s
>1 ... ... r r r r r
>2 s off off s s s s
>2 s ... ... s s s s
>3 r r off off s s s
>3 s s .. ... r r r
>4 s s s off off s s
>4 s s s ... ... s s
>5 s s s s off off s
>5 s s s s ... ... s
>6 s s s s s off off
>6 r r r r r ... ...
>7 off off s s s s s
>7 s off off r r r r

Table 1: Exemplary Shift Roster

day off type Mo Tu We Th Fr Sa Su
>0 off 8 7 6 5 5 off
>0 ... 13 15 4 2 1 ...
>1 off off 8 7 6 5 11
>1 ... ... 12 14 3 2 1
>2 2 off off 8 8 7 6
>2 5 ... ... 11 15 4 3
>3 1 1 off off 10 8 7
>3 5 15 .. ... 4 3 2
>4 3 2 1 off off 9 8
>4 7 6 11 ... ... 13 11
>5 14 2 2 1 off off 8
>5 7 5 11 15 ... ... 4
>6 12 14 3 2 1 off off
>6 8 6 6 5 15 ... ...
>7 off off 13 12 3 2 2
>7 1 off off 4 3 3 2

Table 2: Exemplary Time Frame Roster

New Approach – Time Frame Rostering The issue arising from the traditional ap-
proach is that drivers with reserve shifts do not know in advance when they will have to
work. Moreover, absences of tram drivers and changes in the shift plans might require
a reallocation of shifts. Our proposed method to prevent reserve shifts and reallocation
is to introduce a time frame roster. In a time frame roster, rather than directly assigning
shifts, we initially allocate time frames to roster positions (see Table 2).

In the time frame roster above, each time frame is indicated by a number between 1
and 15 since we consider 15 different time frames. Time frames are essentially intervals
with predefined start and end times. The shift assignment is postponed until a few days
before the actual workday, by which time many absences are already known to the roster
managers. Shifts are assigned to time frames so that they fit within the intervals of the
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frames and are of the correct type. Some time frames allow for, or even require, split
shifts, while others cannot accommodate split shifts.

The objective of the time frame rostering problem is to optimally assign time frames
to roster positions so that shift assignment at a later stage remains possible. This re-
quirement can be broken down into three major constraints:

Firstly, tram drivers may be absent with a certain probability, resulting in two
scenarios. On the one hand, at the time of shift assignment, there might be more time
frames (i.e., drivers) than shifts. In this case, it must be possible to assign all shifts to
time frames; hence, it cannot be the case that shifts remain unassigned because they do
not fit within the time frames. On the other hand, if there are fewer time frames than
shifts, then all time frames must be assigned a shift, and it cannot be the case that there
are time frames left in which none of the remaining shifts fits. The remaining shifts are
then covered by drivers working overtime.

Secondly, to adhere to rest period regulations, two consecutive time frames cannot
appear in the list of forbidden sequences.

Thirdly, there are restrictions on split shifts during a workweek. We provide a formal
definition of the problem and its constraints in the next section.

4 Formal Problem Definition and Model

To formally define the time frame rostering problem, we first need to specify the given
data. Secondly, we explain what constitutes a time frame roster, and the role it plays in
tram driver scheduling. Thirdly, we will outline how to create a day off schedule. Finally,
we will define the hard constraints, soft constraints, decision variables, and the objective
function.

4.1 Provided Data

The provided data comprises four groups: shift-related, time frame-related, day off-
related and constraint-related. This section specifies each of them.
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1. Shift data:
– There is a set of = shifts denoted by ( = {B1, ..., B=}. Each shift has a start and

end time denoted as an interval [0B8 , 1B8 ], 8 2 {1, ..., =}.
– The weekday of a shift is represented by FB8 , ranging from 0 to 6.
– (8 represents the set of shifts for weekday 8:
B 2 (8 , FB = 8, 8 2 {0, ..., 6}

– Each shift has an assigned shift type CB8 , with the value of 1 if the shift is a split
shift and 0 otherwise.

2. Time frame data:
– There is a set of < time frames indicated by � = {1, ...,<}, each with a start

and end time forming an interval [28 , 38], 8 2 {1, ...,<}.
– Each time frame has an assigned type C8 , with 0 allowing only shifts of type 0,

1 allowing only shifts of type 1, and 2 allowing shifts of any type.
3. Day off data:

– There are 8 different day off types >0, ..., >7. Types 0 to 6 have two fixed
consecutive days off, while type 7 follows a 16-week-long rotating day off
schedule, which is provided by a public transport company.

4. Constraint data:
– A list B4@ 5 1 of forbidden time frame sequences.
– A list B4@D3 of undesirable time frame sequences and their penalties.
– A list 5 >A1FC of forbidden times frames for each workweek type FC. This

workweek type is used to encode, on one hand, the proximity of a workday to
the next day off, and on the other hand, whether a roster position is designated
for early or late shifts.

4.2 Definition of a Time Frame Roster

A time frame roster ' possesses the following properties:

– The size of the roster is determined by the sum of the sizes of each day off type.
Thus, a roster ' consists of |' | = Õ7

8=0 |>8 | roster weeks.
– Each roster week A

>
9
8

has an assigned day off type >8 at week 9 and consists of 7
days.

– A roster position A
>
9
8 ,:

is then defined as a specific weekday : within the roster week
A
>
9
8
.

– Each roster position, excluding those designated as days off, will be assigned a time
frame.

– Each roster position A
>
9
8 ,:

features a workweek type FC, ranging from -1 to 30.
– '8 represents a list of time frames assigned to roster ' for weekday 8.

Operating Principle of the Roster Each driver is associated with a specific day off
type >8 and a unique roster week A

>
9
8
. Tram drivers rotate through the roster weeks of

their own day off type in ascending order. Upon reaching the last week of their day off
type > |>8 |

8
, they continue with the first week of their day off type >1

9
. However, there

might be more roster weeks than drivers, since the number of weeks assigned to each
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day off type has to be even. This is the case because drivers alternate between "early"
and "late" weeks. During the early week, their shifts typically start before 10am, while
in the late week, their shifts begin after 10am. Due to this alternating schedule, an even
number of roster weeks is necessary for each day off type.

Time frame rosters are anonymous, i.e., the specific assignment of drivers to roster
weeks is not given, putting the focus solely on constructing the roster itself. To com-
prehend the rotational principle of the roster, it is crucial to define what constitutes two
consecutive positions in the roster.

Definition of Consecutive Roster Positions Given the roster positions

A
>
:
8 ,<

, A
>
;
8 ,=
2 '

then A
>
:
8 ,<

is immediately followed by A
>
;
8 ,=

iff one of the following statement holds:

– Two consecutive days in the same roster week: : = ;, = = < + 1.
– Sunday in one week (but not the last week of a day off type) followed by Monday in

the next week: ; = : + 1, < = 6, = = 0.
– Sunday in the last week of a day off type followed by Monday in the first week of

the same day off type: : = |>8 |, ; = 1, < = 6, = = 0.

4.3 Algorithm for Calculating the Minimum Number of Drivers Needed

We propose the min_demand algorithm to calculate the required number of drivers for a
certain number of shifts given the drivers’ absence probability. The algorithm starts with
a lower bound (e.g., number of shifts) and increases the demand until the lower bound
is covered with a probability of ?BD2, i.e., until the binomial cumulative distribution
function returns a probability greater than ?BD2:

1 min_demand ( p_abs , p_suc , l b ) :
2 I f ( l b = 0)
3 minDemand = 0
4 E l s e
5 minDemand = l b
6 While ( binom . cd f ( minDemand−lb , minDemand , p_abs ) <= p_suc

)
7 minDemand = minDemand + 1
8 Re tu rn minDemand

This is the binomial cumulative distribution function used in the min_demand algorithm:

binom.cdf (: , =, ?) = %(-  :) =
:’
8=0

✓
=

8

◆
?
8 (1 � ?)=�8

Given a number of = trials, the probability ? of a trial being successful and a number of
: successes, the binomial cumulative distribution function returns the probability that
there are : or fewer successes.
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The min_demand algorithm will be used in several constraints, so we want to clarify
its meaning by providing an example. Assume that drivers are absent with a probability
of 10% (?01B = 0.1). Let’s also assume that we have 10 shifts and aim to cover 9 of
them (2>E 5 02 = 0.9, ;1 = 9) with a probability of 99% (?BD2 = 0.99). The question is
then: How many drivers do we need to ensure that at least 9 drivers show up to work
99% of the time?

To determine this number, we use the function call: min_demand(0.1, 0.99, 9). In the
first iteration, the function binom.cdf (0,9,0.1) is called and returns the likelihood that
from 9 drivers, 0 or fewer are absent given the absence probability of 10%. This value
is 0.38742, which is smaller than the required 0.99, so the while loop continues. The
loop stops with the call binom.cdf (4,13,0.1), where the binomial cumulative distribution
function returns 0.99354. This means that in 99.354% of the days, no more than 4 out of
13 drivers are absent. Thus, we determine that the required number of drivers to cover
the shifts is 13.

One might ask: Aren’t there 10 shifts to be covered, not 9? That is correct, but we
aim to cover only a certain percentage of shifts, as the remaining ones can be handled
by drivers working overtime if necessary. If all shifts were covered with a probability
of 99%, there would quite often be too many drivers on stand-by. The coverage factor
provides the ability to regulate the extent to which you want to have more drivers working
overtime (lower coverage, risk of being understaffed) or more drivers on stand-by (higher
coverage, risk of being overstaffed).

4.4 Creating a Day Off Schedule

Before assigning time frames to roster positions, we first create a day off schedule to
determine the size of the roster and the placement of the days off. We assume that
drivers may be absent with a binomially distributed probability ?01B . Based on real-
world observations, the demand for drivers 34<8 for each weekday 8 is determined
by calculating the minimum even number of drivers such that the number of drivers
showing up is at least (2>E 5 02 · 100)% of the number of shifts |(8 | with a probability of
?BD2:

34<8 =

&
min_demand(?01B , ?BD2,

⌃
|(8 | · 2>E 5 02

⌥
)

2

'
· 2

The demand 34<8 is then used to determine the day off schedule, for a detailed
description, please refer to Appendix 6. Based on the day off schedule, we can proceed
to construct and encode the empty roster ' containing only the days off. Given this
roster ', the goal now is to assign time frames to the empty positions in ' such that
the hard constraints are not violated and the objective function value is minimized. The
subsequent three sections define the hard and soft constrains, as well as the objective
function.

4.5 Hard Constraints

Given an assigned roster ' and the probability ?01B that drivers are absent, it must be
possible (with a probability of success of at least ?BD22) to assign every present driver
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a shift such that the shift fits within the interval provided by the assigned time frame
and is of the correct type. There are two independent occasions to violate this abstract
constraint: First, we only ensure with a probability of %(�) = ?BD2 that there remain
enough time frames 5 of type C 5 > 0 to accommodate all split shifts and secondly, we
guarantee with probability of %(⌫) = ?BD2 that there remain enough time frames 5 of
type C 5 < 1 to accommodate the regular shifts, hence the overall probability of success
is %(� \ ⌫) = ?BD2

2. To check whether this abstract constraint holds, we would need
to simulate the shift assignment to time frames which itself is a NP-hard problem [11].
Hence, we break down the abstract constraint into hard constraints ⌘1 � ⌘3 and soft
constraint B1. Additionally, we verify for each solution (i.e., for each time frame roster)
by simulating absences and subsequent shift assignment whether constraints ⌘1� ⌘3 and
B1 were successful in ensuring that the aforementioned constraint holds (for details see
Section 5.2).

Minimum Coverage First, we define a coverage: Each weekday is split into time
intervals [g9 , g9+1) of length g9+1 � g9 = 0.5 (30 min), starting with g1 = 3 (i.e., 3am on
the current day) and ending with g55 = 30 (i.e., 6am on the next day). The shift coverage
of a time interval [g9 , g9+1) for weekday 8 is defined as the number of shifts B 2 (8 that
start before g9+1, end after g9 and are either split shifts or not:

<8=_2>E8, 9 =
’

B2(8 , CB=0, 0B<g 9+1 , 1B>g 9

1

<8=_2>E_B?;8C8, 9 =
’

B2(8 , CB=1, 0B<g 9+1 , 1B>g 9

1

The frame coverage is defined analogously:

5 A_2>E8, 9 =
’

5 2'8 , C 5 =0, 2 5 <g 9+1 , 3 5 >g 9

1

5 A_2>E_B?;8C8, 9 =
’

5 2'8 , C 5 >0, 2 5 <g 9+1 , 3 5 >g 9

1

The frame coverage must be greater or equal the shift coverage:

⌘10 : 5 A_2>E8, 9 � <8=_2>E8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 54}
⌘11 : 5 A_2>E_B?;8C8, 9 � <8=_2>E_B?;8C8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 54}

Minimum Frame Set The hard constraint ⌘1 is not sufficient by itself to ensure that
shifts fit into the available time frames. We need to guarantee that there are enough
frames to accommodate the shifts, taken into account the probability of absences ?01B .
A shift can lie in the interval of several time frames, hence we obtain a set of time frames
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�(B covering a shift B. We determine the minimum size required for each of these sets
of time frames, similar to how we determine the necessary count of drivers and days off:

�(B = { 5 | 5 2 �, C 5 < 1, B 2 (, [0B , 1B] 2 [2 5 , 3 5 ]}
�(B?;8CB

= { 5 | 5 2 �, C 5 = 1, B 2 (, [0B , 1B] 2 [2 5 , 3 5 ]}

We also compute frame sets �( 9 for artificial shifts of length 4 (assumed minimum shift
length) to get every possible frame set. Subsequently, we count the shifts having the
same frame set �( 9 for weekday 8:

2>D=C�(8, 9 = |{B | B 2 (8 , �( 9 = �(B}|
2>D=C�(B?;8C8, 9

= |{B | B 2 (8 , �(B?;8C 9 = �(B?;8CB }|

The size of a frame set �( 9 for weekday 8 is defined as the sum of the count of frame 5
appearing in roster column '8 over all frames 5 2 �( 9 :

|�(8, 9 | =
’
5 2�( 9

’
5 2'8

1 |�(B?;8C8, 9 | =
’

5 2�(B?;8C 9

’
5 2'8

1

The minimum size of a frame set �( 9 for weekday 8 is then the number of frames |�(8, 9 |
necessary to cover at least (2>E 5 02 · 100)% of shifts possessing the frame set �( 9 or
subsets thereof with a probability of ?BD2:

<8=�(8, 9 = min_demand(?01B , ?BD2,
’

�(:✓�( 9

⌃
2>E 5 02 · 2>D=C�(8,:

⌥
)

The size of a frame set must be greater or equal the minimum size for this set:

⌘20 : |�(8, 9 | � <8=�(8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 30}

Split shifts are treated differently since they contain a long break, increasing the overall
shift duration. This makes it more important for drivers to known if their associated time
frames allow or even require a split shift. Hence, there are special minimum frame set
constraints for split shifts, for details please refer to Appendix 6.

Maximum Frame Set In addition to the hard constraints ⌘1 and ⌘2, we define maximum
frame sets. Instead of counting shifts with the same frame set, we count how many shifts
can be covered using any frame 5 in a frame set �( 9 . This gives us the maximum
number of shifts coverable by a frame from frame set �( 9 :

<0G_2>D=C�(8, 9 = |{B | B 2 (8 , 9 5 2 �( 9 : [0B , 1B] 2 [2 5 , 3 5 ]}|

We once again employ the min_demand algorithm but this time in reverse. The maximum
size of a frame set �( 9 for weekday 8 is determined by the maximum number of frames
|�(8, 9 | such that there is only a probability of 1 � ?BD2 for there to be more frames than
shifts to cover:

<0G�(8, 9 = min_demand(?01B , 1 � ?BD2, <0G_2>D=C�(8, 9 + 1) � 1
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The size of a frame set must be smaller or equal the maximum size for this set. However,
this is restricted to frame sets of size less than 4, as larger sets render rosters infeasible.
For frame sets of size greater than 3, we adjust the maximum to match the number of
shifts |(8 | for weekday 8. In case the maximum is lower than the minimum, we decrease
the minimum such that it equals the maximum.

⌘30 : |�(8, 9 |  <0G�(8, 9 8 2 {0, ..., 6}, |�( 9 | < 4
⌘31 : |�(8, 9 |  |(8 | 8 2 {0, ..., 6}, |�( 9 | � 4

Forbidden Sequences Some sequences of time frames are forbidden, primarily due to
rest time regulations. A consecutive time frame assignment ( 51, 52) in roster ' cannot
appear in the list of forbidden sequences B4@ 5 1:

⌘4 : 8( 51, 52) 2 ' : ( 51, 52) 8 B4@ 5 1 51, 52 2 �

Forbidden Frames Drivers follow an alternating scheme where in one week they are
only assigned early shifts, and in the subsequent week, only late shifts. Split shifts can
only be assigned during the first two days of the "early" week or the last day of the "late"
week. A workweek type is utilized to encode this information for each roster positions.
A time frame assignment 5 to a roster position of workweek type FC cannot appear in
the list of forbidden time frames for this workweek type:

⌘5 : 8 5 2 ' : 5 8 5 >A1FC 5 2 �, 5 = A
>
9
8 ,:

, FC = FCA
>
9
8 ,:

Our model includes additional hard constraints, which ensure that weekdays with similar
shifts also have similar time frames, and that the solution contains a certain number of
night and relief frames. These constraints are defined in Appendix 6.

Additionally, our problem includes several soft constraints. These constraints are
defined in Appendix 6.

4.6 Decision Variable

The time frames represent the decision variables. For each roster position A
>
9
8 ,:

in roster
' that is not assigned a day off, we assign a time frame A

>
9
8 ,:

:= 5 2 �.

4.7 Objective Function

The objective of this problem is to assign time frames to roster positions such that the
costs associated with soft constraints B1 to B6 are minimized while ensuring that hard
constraints ⌘1 to ⌘8 hold. To balance the costs, each soft constraint is multiplied by an
adjustable weight before aggregation, resulting in the following function:

min F1B1 + F2B2 + F3B3 + F4B4 + F5B5 + F6B6 F1,F2,F3,F4,F5,F6 2 N+

s.t. ⌘1 � ⌘8 hold
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4.8 Solver-independent Model

Based on the problem definition provided in this section, we create a solver-independent
model of the time frame rostering problem by using MiniZinc [13]. A MiniZinc model
allows us to use both linear and constraint solvers. Our model1 includes all hard and
soft constraints as well as the objective function outlined in the problem definition. To
speed up the solving process, we also make use of redundant constraints and symmetry
breaking.

Redundant Constraints We include redundant constraints for the forbidden sequence
constraint. This is done by exploiting the time frames numbering. For some workweek
types and time frames we can state, for example, that the following time frame must be
smaller than or equal to the current one without checking the list of forbidden sequences.

Symmetry Breaking We can pre-assign time frames 5 2 �( 9 if there is only a single
frame in the set (|�( 9 | = 1). In such cases, there is no choice of time frames, and
we know, due to the minimum frame set constraint, that a certain number of these time
frames have to be in the roster. We pre-assign these time frames so that they are uniformly
distributed across the roster and assigned to positions where they do not influence the
overall solution quality.

5 Evaluation

We evaluate our proposed model using a diverse set of twelve real-world instances.
These twelve distinct sets of shifts are extracted from real-world shift plans, that have
been provided by a public transportation company. We also make this data available
to the scientific community2. Instance properties, time frame properties and parameter
settings can be found in Appendix 6. The evaluation process involves several steps:
Firstly, we solve the instances using two different state-of-the-art solvers and compare
the results. Secondly, we validate the solutions using a simulation model. Finally, we
discuss the obtained results in detail.

5.1 Results

To evaluate our solver-independent model, we solve the instances using two conceptually
different state-of-the-art solvers: linear solver Gurobi 11.0.0 [7] and constraint solver
OR-Tools 9.8.3296 [14].

The test setup looks as follows: For each instance, we set the time limit to 120
minutes. The solvers are allowed to use up to 20 threads. The experiments are run on an
Intel i5-13500 2.5GHz processor with 20 logical units and with 32GB of RAM available.

1https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/frame_rostering_problem.mzn
2https://github.com/lukasfruehwirth/time_frame_rostering
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We define the gap 6 between the objective value >E of a solution and the best known
lower bound ;114BC as:

6 = ( |;114BC � >E |
>E

) · 100

Table 3 shows the objective values, optimality gaps and runtimes for both solvers:

Gurobi OR-Tools Gurobi OR-Tools

Inst. |S| |R| Obj. Value
>E

Gap
6

Obj. Value
>E

Gap
6

Runtime
(mm:ss)

Runtime
(mm:ss)

1 1,380 364 1,868,046 optimal 5,127,240 87.31% 16:15 TL
2 1,159 308 4,808,321 optimal 31,525,200 91.11% 10:04 TL
3 1,282 338 3,487,611 optimal 7,832,640 67.93% 39:49 TL
4 1,456 382 20,100,971 optimal 190,637,000 91.10% 21:35 TL
5 2,539 652 4,212,492 0.040% 113,196,000 99.39% TL TL
6 2,738 702 6,784,287 0.594% 303,801,000 99.83% TL TL
7 1,344 354 2,041,618 0.015% 4,138,020 74.92% TL TL
8 1,134 302 905,588 optimal 1,438,480 68.78% 17:29 TL
9 1,224 324 780,783 optimal 3,436,120 90.28% 29:46 TL
10 1,375 362 1,070,283 optimal 2,389,440 85.27% 42:38 TL
11 2,478 636 2,970,358 0.004% 10,427,500 94.47% TL TL
12 2,599 666 2,062,171 0.040% 160,549,000 99.80% TL TL

Table 3: Results – Comparison of Gurobi and OR-Tools
To improve the performance of both solvers, we tried to circumvent modeling hard
constraints as soft constraints with high penalties (see soft constraint B4). Instead of
relying on 14;>F(⌘23 ) and 14;>F(⌘24 ), we pre-determine the maximum number of
positions in roster ' for weekday 8 that can accommodate frames of type C 5 2 {1, 2},
according to the specified workweek types FC for each roster position. If the minimum
demand for ⌘23 and ⌘24 , as formalized in Section 4.5, surpasses this maximum, we
adjust the minimum to match the identified maximum. This approach allows us to define
⌘23 and ⌘24 as hard constraints in our model, while ensuring the model’s satisfiability.
The soft constraint B4 is thus reduced to B4 = 14;>F(⌘2 5 ) · ?4=⌘0A3_2>=. Nonetheless,
this modification to the MiniZinc model did not really affect Gurobi’s performance and
only slightly improved OR-Tools’ performance, which remained significantly below that
of Gurobi. Consequently, we did not include the results in this paper. However, results
for the modified model can be found in the master’s thesis [5].

5.2 Simulation

To check whether our abstract constraint formulated in section 4.5 does indeed hold, we
simulate absences. This is done by discarding some frames according to ?01B:

'8B8< = [ 5 | 5 2 '8 , A0=3  1 � ?01B]
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Where A0=3 is for each frame in '8 a newly sampled, random real number between 0
and 1.

Using this reduced list of frames, we simulate the shift assignment for weekday 8 by
deploying a simulation model3 modeled in MiniZinc. For a detailed model description,
please refer to Appendix 6.

Since the simulation (shift assignment) itself is NP-hard [11] and rather time-
consuming, we do not simulate the entire roster week at once but separately for each
weekday. For each solution (i.e. time frame roster) and weekday 8, we simulate 100
shift assignments. The number of failed shift assignments for weekday 8 is denoted as
B8< 5 08;8

. The rate of success is then defined as:

B8<BD2 = (1 �
Õ6
8=0 B8< 5 08;8

700
) · 100

The objective is to achieve a success rate B8<BD2 > ?BD2
2 (see Section 4.5). Table 4

presents the simulation results for all instances and solvers:

Gurobi OR-Tools

Inst. |S| |R| Sim. Result
B8<BD2

Sim. Result
B8<BD2

1 1,380 364 99.14% 97.48%
2 1,159 308 98.43% 86.86%
3 1,282 338 98.57% 98.00%
4 1,456 382 96.14% 26.86%
5 2,539 652 99.29% 62.57%
6 2,738 702 99.71% 23.86%
7 1,344 354 99.00% 98.57%
8 1,134 302 98.71% 97.86%
9 1,224 324 99.14% 96.86%
10 1,375 362 99.00% 97.43%
11 2,478 636 99.71% 98.71%
12 2,599 666 98.71% 27.43%

Table 4: Simulation Results

5.3 Discussion

Table 3 clearly demonstrates that our model performs significantly better with the solver
Gurobi compared to the OR-Tools solver. Gurobi consistently achieves superior results,
quickly finding optimal solutions for 7 out of 12 instances and coming very close to
optimality for the remaining ones. Notably, even for the larger instances 5, 6, 11, and 12,
Gurobi produces solutions with a gap to the best known lower bound smaller than 0.6%.
Conversely, the constraint solver OR-Tools fails to solve any instances within the time
limit to optimality. The smallest gap reached by OR-Tools is 67.93%. Thus, all solutions

3https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/shift_assignment_simulation.mzn
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provided by OR-Tools are considerably far from the optimal solution. OR-Tools performs
comparably well in finding a satisfiable solution and can compute approximately ten
times more solutions than Gurobi within the designated time limit. However, these
additional solutions provide only minor improvements over the first solution found. It
appears that OR-Tools struggles with our model’s objective function, which consists of
several independent soft constraints.

Table 4 shows that for 11 out of 12 solutions generated by Gurobi, we achieve a
success rate exceeding ?BD2

2 · 100 = 98.01%. This suggests that hard constraints ⌘1
through ⌘3 and soft constraint B1 effectively model the abstract constraint mentioned
at the beginning of section 4.5. The only instance where the success rate falls below
98.01% is instance 4. If we take a closer look at the solution of this instance, we can
see that the softened hard constraints ⌘23 and ⌘2 5 have to be violated in order to not
violate hard constraint ⌘5 (forbidden frames), resulting in an objective value significantly
surpassing 1,000,000, as Table 3 reveals. To improve the success rate for these instances,
practitioners may need to consider relaxing some of the hard constraints ⌘4 to ⌘8 and, in
particular, ⌘5. Since we have softened some hard constraints, it becomes crucial to obtain
solutions close to the optimum; otherwise, the success rate of the simulation falls below
acceptable levels. This observation is supported by examining the simulation results
computed for solutions provided by the OR-Tools solver. Table 4 shows that for 10 out
of 12 solutions generated by OR-Tools, the success rate is below ?BD2

2 · 100 = 98.01%.

6 Conclusion

In this study, we introduce the time frame rostering problem, a novel challenge arising
from the desire for enhanced medium-term planning security and, generally, more robust
rosters in tram driver scheduling. We translate the abstract problem description into a
formal problem definition and provide a solver-independent model using MiniZinc.
This translation involves processing the given data to derive lower and upper bounds
for some of the hard constraints of the model. Additionally, we verify whether the
abstract constraint mentioned in Section 4.5 is indeed fulfilled by simulating tram
drivers’ absences and subsequent shift assignments.

The results reveal that the linear solver Gurobi is able to solve 7 out of 12 real-
world instances to optimality in less than an hour. For the remaining instances, Gurobi
generates solutions very close to the optimum within two hours. Furthermore, the
simulation shows that solutions based on our model are indeed feasible and deployable
in practice, as for almost all instances and simulation runs, the assignment of shifts
to time frames is successfully completed. Some instances had a slightly lower success
rate in the simulation because we allowed certain hard constraints to be violated to
satisfy others. This is a trade-off that practitioners should consider when using our
model. In summary, it can be stated that we have successfully developed a model for the
time frame rostering problem, that can be used to solve real-world instances to (nearly)
optimal levels within a reasonable amount of time.

Future work could test if other constraint solvers outperform OR-Tools and explore
approaches to improve the performance of constraint solvers. Moreover, further investi-
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gation into optimizing time frame rosters may involve penalizing the interval width of
the time frames to further enhanced medium-term planning security of tram drivers.

Acknowledgements The financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association is gratefully acknowledged.
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Appendix A - Day Off Schedule

Every driver works 5 days per week, but the sum 34< =
Õ6
8=0 34<8 is not necessarily a

multiple of 5. Hence, we need to slightly adjust the demand:

5 A02 =

Õ6
8=0 38

5
�

$Õ6
8=0 38

5

%

If 5 A02 = 0.2 then 34<5 += 2, 34<6 += 2,
else if 5 A02 = 0.4 then 34<6 �= 2,
else if 5 A02 = 0.8 then 34<6 += 2,
else if 5 A02 = 0.8 then 34<5 �= 2, 34<6 �= 2

We determine the number of roster positions of roster ' by summing up the demands
and dividing by 5:

|' | =
Õ6
8=0 34<8

5

The day off demand 3>8 for weekday 8 is then the size of the roster minus the driver
demand 34<8:

3>8 = |' | � 34<8 , 8 2 {0, ..., 6}

The days off have to be two consecutive days. Furthermore, the size of a day off type
must be even and we limit the size of type >8 to |>8 |  2|>8+1 | and 2|>8 | � |>8+1 | for
8 2 {0, ..., 5}. In order to find the optimal day off schedule, we formulate the following
model in MiniZinc4 [13]:

Variables:

|>8 | ... size of day off type 8 2 {0, ..., 6}

G8 =

(
|>8 | + |>8+1 |, if 8 < 6
|>0 | + |>6 |, if 8 = 6

Objective function:

min |3>8 � G8 | 8 2 {0, ..., 6}

s.t.
6’
8=0

|>8 | = |' |

|>8 | mod 2 = 0 8 2 {0, ..., 6}
|>8 |  2|>8+1 | 8 2 {0, ..., 5}
2|>8 | � |>8+1 | 8 2 {0, ..., 5}

4https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/day_off_type_size.mzn
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After finding the optimal size for each day off type >0 to >6, day off type >7 is introduced,
which has a 16-week-long rotating day off schedule. The structure of this schedule is
provided by a public transportation company. Based on real-world observations, the size
of day off type >7 is calculated by using a fixed share of 30%:

|>7 | =
�
|' | · 0.3

16

⌫
· 16

Day off types 0-6 are reduced accordingly:

|>8 | =
(
|>8 | � |>7 |

8 , if 8 < 6
|>8 | � |>7 |

4 , if 8 = 6



The Time Frame Rostering Problem 205

Appendix B- Minimum Frame Sets for Split Shifts

The number of time frames in the roster allowing only split shifts to be assigned equals
80% of the total split shifts (see ⌘21 , ⌘22 ). The utilization of 80% aims to accommodate
small changes in the shift plan without making the rosters unsatisfiable. The minimum
size of a split frame set �(B?;8C 9 is defined similarly to a regular frame set, except that it
must cover 100% of split shifts (see ⌘23 , ⌘24 ). There are frames that can accommodate
regular as well as split shifts, hence we also calculate the minimum demand for all early
week time frames including the once designated for split shifts (see ⌘2 5 ). Furthermore,
time frames of type greater 0 are only allowed if the set of shifts contains split shifts
(see ⌘26 ).

⌘21 : |�(B?;8C8, 9 | = |{B | B 2 (8 , CB = 1}| · 0.8

8 2 {0, ..., 6}, �(B?;8C 9 = { 5 | 5 2 �, C 5 = 1}
⌘22 : |�(B?;8C8, 9 | � 2>D=C�(B?;8C8, 9 · 0.8

8 2 {0, ..., 6}, |�(B?;8C 9 | = 1

⌘23 : |�(B?;8C8, 9 | � min_demand(?01B , ?BD2, |{B | B 2 (8 , CB = 1}|)
8 2 {0, ..., 6}, �(B?;8C 9 = { 5 | 5 2 �, C 5 > 0}

⌘24 : |�(B?;8C8, 9 | � min_demand(?01B , ?BD2, 2>D=C�(B?;8C8, 9 )
8 2 {0, ..., 6}, �(B?;8C 9 2 {{12, 13}, {14, 15}}

⌘2 5 : |�(8, 9 | + |�(B?;8C8,⌘ | �

min_demand(?01B , ?BD2, |{B | B 2 (8 , CB = 1}| +
’

�(:✓�( 9

⌃
2>E 5 02 · 2>D=C�(8,:

⌥
)

8 2 {0, ..., 6}, �( 9 = {1, 2, 3, 4, 11, 14, 15}
⌘26 : |{B | B 2 (8 , CB = 1}| = 0 =) |{ 5 | 5 2 '8 , C 5 > 0}| = 0
8 2 {0, ..., 6}
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Appendix C - Additional Hard Constraints

Maximum Frame Deviation Weekdays with similar shifts should also have similar
time frames. To ensure this, we define a maximum deviation of a time frame count
between two weekdays. The following algorithm uses the minimum coverage definition
(see ⌘1):

1 max_dev i a t i on ( min_cov , dev_a l l owed ) :
2 For ( i i n { 0 , . . . , 5 } )
3 x =

Õ29
9=0 <8=_2>E8, 9

4 y =
Õ29
9=0 <8=_2>E8+1, 9

5 I f ( x < y )
6 dev = y / x
7 E l s e
8 dev = x / y
9 maxDev [ i ] = dev_a l l owed + c e i l ( 5 00 ( dev − 1) )

10 Re tu rn maxDev

For weekdays 0 to 5 the absolute difference in the count of frame 5 between two
consecutive days (8, 8 + 1) must be smaller or equal <0G⇡4E [8] (see ⌘60 ). For weekdays
0 to 4 the absolute difference in the count of frame 5 between any of these days must be
smaller or equal <0G⇡4E [8] (see ⌘61�3).

⌘60 : |
’
5 2'8

1 �
’
5 2'8+1

1 |  <0G⇡4E [8] 8 2 {0, ..., 5}, 5 2 �

⌘61 : |
’
5 2'8

1 �
’
5 2'8+2

1 |  <0G⇡4E [8] 8 2 {0, 1, 2}, 5 2 �

⌘62 : |
’
5 2'8

1 �
’
5 2'8+3

1 |  <0G⇡4E [8] 8 2 {0, 1}, 5 2 �

⌘63 : |
’
5 2'8

1 �
’
5 2'8+4

1 |  <0G⇡4E [8] 8 = 0, 5 2 �

Night Frames Time frames with an end time after 2am are called night frames and
are only allowed if there are also shifts ending after 2am. Furthermore, for frame sets
consisting of only night frames, the maximum frame set size is set to the minimum
frame set size:

⌘70 : |{B | B 2 (8 , 1B > 26}| = 0 =) |{ 5 | 5 2 '8 , 3 5 > 26}| = 0
⌘71 : <0G�(8, 9 := <8=�(8, 9 8 2 {0, ..., 6}, �( 9 = { 5 | 5 2 �, 3 5 > 26}

Relief Frames Two of the time frames�(A = {11, 15} are considered to be relief frames,
since they can accommodate early and late shifts. These time frames are necessary to
balance potential imbalances between early time frames �(4 = {1, 2, 3, 4, 11, 14, 15}
and late time frames �(; = {5, 6, 7, 8, 9, 11, 15} and thus, appear in both sets �(A =
�(4 \ �(; . We determine the minimum size of frame set �(A by calculating the
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maximum difference between early and late frames given that drivers are absent with
probability ?01B:

;18 = arg min
G

(
p

1 � ?BD2  18=><.235 (G, <8=( |�(8,4 |, |�(8,; |), 1 � ?01B) � 1

D18 = arg min
G

(1 �
p

1 � ?BD2  18=><.235 (G, <0G( |�(8,4 |, |�(8,; |), 1 � ?01B)

⌘8 : <8=�(8,A = D18 � ;18 8 2 {0, ..., 6}
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Appendix D - Soft Constraints

Deviation from Desired Coverage In addition to the hard constraints ⌘1 � ⌘3 we
introduce a soft constraint that penalizes the deviation from the desired coverage. The
aim is to satisfy the abstract constraint mentioned at the beginning of section 4.5. We
calculate the desired coverage by again using the min_demand algorithm:

2>E_34B8, 9 = min_demand(?01B , ?BD2, <8=_2>E8, 9 )
2>E_B?;8C_34B8, 9 = min_demand(?01B , ?BD2, <8=_2>E_B?;8C8, 9 )

To calculate the deviation penalty, we square the difference between frame coverage and
desired coverage if the frame coverage is greater, and take the difference to the power of
4 otherwise. The difference between split coverage and desired split coverage is simply
squared:

2>E_?4=8, 9 =

(
(2>E_34B8, 9 � 5 A_2>E8, 9 )4 if 2>E_34B8, 9  5 A_2>E8, 9
(2>E_34B8, 9 � 5 A_2>E8, 9 )2 if 2>E_34B8, 9 > 5 A_2>E8, 9

2>E_B?;8C_?4=8, 9 = (2>E_B?;8C_34B8, 9 � 5 A_2>E_B?;8C8, 9 )2

B1 =
6’
8=0

55’
9=1
2>E_?4=8, 9 + 2>E_B?;8C_?4=8, 9

Undesirable Sequences Some sequences of time frames are undesirable, primarily
due to rest time regulations. A consecutive time frame assignment ( 51, 52) in roster '
appearing in the list of undesirable sequences B4@D3 incurs a penalty ?( 51, 52) (penalty
function ? is given):

B2 =
’

( 51 , 52 )2', ( 51 , 52 )2B4@D3
?( 51, 52)

Below Minimum Frame The hard constraints ⌘23 � ⌘2 5 sometimes result in unsatisfi-
ability. To prevent this outcome, we transform them into soft constraints and introduce
a high penalty if the frame set counts fall below the minima. The function 14;>F(⌘)
returns the extent to which a hard constraint ⌘ is undershot:

B4 = (14;>F(⌘23 ) + 14;>F(⌘24 ) + 14;>F(⌘2 5 )) · ?4=⌘0A3_2>=

Frame Deviation Weekdays with similar shifts should also have similar time frames.
This is in particular the case for weekdays 0 to 4, since they usually have very similar
sets of shifts. We penalize the frame deviation between these weekdays:

B3 =
4’
8=1

15’
5 =1

|
’
5 2'8

1 �
’
5 2'8+1

1 |
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Same Frame Next Day To provide drivers with some variety in the sequence of time
frames, we introduce a penalty for consecutive assignments of the same time frame
( 5 , 5 ) in roster ':

B5 =
’

( 5 , 5 )2', 5 2�
1

Same Frames Next Week To achieve a more even distribution of time frames within
a day off type, we introduce a penalty for assigning the same time frames to two
consecutive "early" or "late" weeks. The penalty B6 is similar to B5, we simply count all
occurrences.
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Appendix E - Instance and Parameter Settings

Table 5 illustrates the main properties of the twelve instances, where the column |(?8 |
stands for the number of split shifts in weekday 8:

Inst. |(0| - |(3| |(4| |(5| |(6| |(?0| - |(?4| |(?5| |(?6|
1 223 223 142 123 29 4 0
2 185 185 123 111 27 6 0
3 204 204 139 123 23 9 0
4 233 233 153 138 37 7 0
5 408 408 265 234 56 10 0
6 437 437 292 261 60 16 0
7 217 219 132 125 22 0 0
8 183 183 110 109 21 3 0
9 194 194 134 120 15 0 0
10 218 218 148 137 23 0 0
11 400 402 242 234 43 3 0
12 412 412 282 257 38 0 0

Table 5: Instance Properties
For all instances, we use the following parameter settings and time frames:

Parameter Setting
2>E 5 02 0.90
?01B 0.25
?BD2 0.99

34E_0;;>F43 5
?4=⌘0A3_2>= 1,000,000

F1 1
F2 10
F3 10,000
F4 1
F5 100
F6 100

Table 6: Parameter Settings

Time
Frame

Interval Length
(hh:mm) Type

1 10:30 0
2 11:00 0
3 12:30 0
4 12:30 0
5 11:00 0
6 12:00 0
7 12:30 0
8 11:00 0
9 7:30 0
10 15:00 0
11 16:00 0
12 16:30 1
13 17:00 1
14 12:30 / 16:30 2
15 16:00 / 17:00 2

Table 7: Time Frame Properties
Time frames 14 and 15 can accommodate regular and split shifts and are, therefore,
a combination of other time frames. This is the reason why there are two different inter-
val lengths given for these time frames in Table 7. If time frame 14 is assigned a regular
shift, then its properties are equal to those of time frame 4. If time frame 14 is assigned
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a split shift, then its properties are equal to those of time frame 12. Similarly, if time
frame 15 is assigned a regular shift, then its properties are equal to those of time frame
11. Conversely, if time frame 15 is assigned a split shift, then its properties are equal to
those of time frame 13.
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Appendix F - Simulation Model

Variables:

(8 ... list of shifts for weekday 8
'8B8< ... list of time frames for weekday 8
-8 ... list of length |'8B8< | with domain 0 to |(8 |

Constraints:

21 : All elements of -8 except 0 must be different
22 : 8B[ 9] 2 (8 : C

B[ 9 ] = 1 =) 9 2 -8
23 : |'8B8< |  |(8 | =) 0 8 -8

24 : |'8B8< | > |(8 | =)
’

G2-8 , G=0
1 = |'8B8< | � |(8 |

25 : 8 9 2 [0, ..., |'8B8< |] : ((- [ 9] > 0) =) C
B[-[ 9 ] ] = 0) =)

C
'8B8< [ 9 ] < 1 ^ [0

B[-[ 9 ] ] , 1B[-[ 9 ] ] ] 2 [2
'8B8< [ 9 ] , 3'8B8< [ 9 ] ]

26 : 8 9 2 [0, ..., |'8B8< |] : ((- [ 9] > 0) =) C
B[-[ 9 ] ] = 1) =)

C
'8B8< [ 9 ] > 0 ^ [0

B[-[ 9 ] ] , 1B[-[ 9 ] ] ] 2 [2
'8B8< [ 9 ] , 3'8B8< [ 9 ] ]

We cannot assign the same shift to different time frames (21). Split shifts must be
assigned (22). If the number of remaining time frames is less or equal the number of
shifts, all of these time frames have to be assigned a shift (23). If the number of remaining
time frames is greater than the number of shifts, then all shifts have to be assigned to time
frames (24). The number of time frames without a shift assigned is then |'8B8< | � |(8 |.
If a shift of type 0 is assigned to a time frame, then this time frame cannot be of type 1
and the shift’s interval must lie within the time frame’s interval (25). If a shift of type
1 is assigned to a time frame, then this time frame cannot be of type 0 and the shift’s
interval must lie within the time frame’s interval (26).
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Abstract. Nurse rostering—assigning nurses to the shifts of a hospital ward—is
one of the most studied of all timetabling problems. This paper describes ongoing
work on the KHE24 nurse rostering solver. KHE24 is an improved version of the
KHE18 solver published previously. It uses a time sweep algorithm to find an initial
solution, which it then repairs using ejection chains and optimal reassignment by
dynamic programming. Results are presented for several well-known data sets.
They show that KHE24 is making progress towards success in practice, taking
running time and breadth of application into account as well as solution cost.

Keywords: Nurse rostering, Time sweep, Ejection chains, XESTT

1 Introduction

Nurse rostering—assigning nurses to the shifts of a hospital ward—is one of the most
studied of all timetabling problems. It is an NP-complete problem, and exact algo-
rithms are out of reach in general, although many smaller instances have been solved to
optimality using integer programming [4,36].

Many inexact methods have been tried. Recent work covers a wide range; it includes
integer programming [15,29,32,36,40], weighted maxSAT [10,11], simulated annealing
[9,38], hyper-heuristics [2,16,33], variable neighbourhood search [39], and constraint
programming [34]. For older work, see [41].

The solver presented here, KHE24, is the 2024 version of the main solver built by
the author on his KHE solver platform [20]. It is an improved version of the KHE18
solver described in [22]. It runs in polynomial time and aims to find competitive but not
optimal solutions quickly, across a wide range of instances. It finds an initial solution
using a time sweep algorithm (Section 3.1). This timetables the first day of the cycle,
then the second, and so on. It then tries two repair methods: ejection chains (Section 3.3)
and optimal reassignment using dynamic programming (Section 3.4).

The author’s intention is to test KHE24 on four well-known data sets, to demonstrate
its ability to solve a wide range of practical instances. At present, however, it has been
tested on only two data sets and half of a third (Section 4). Although KHE24 has not
found any new best solutions, on its own terms (that is, considering running time and
breadth of application as well as cost) it promises to be successful. The work is ongoing.

http://jeffreykingston.id.au
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2 Nurse rostering and its XESTT formulation

Nurse rostering is the problem of assigning shifts to the nurses of a hospital ward.
Hospitals operate 24 hours a day, so there are usually at least three types of shifts:
morning, afternoon, and night. Each shift demands a certain number of nurses, often
with specific skills. There may be some flexibility in how many nurses to assign, and
the number typically changes from day to day.

Perhaps the most characteristic feature of the problem is the large array of require-
ments that each nurse’s timetable must satisfy. In addition to workload limits, there are
rules such as ‘a nurse must have a day off after a sequence of night shifts’, ‘a nurse may
work at most four days in a row’, and so on. These requirements are different at different
institutions.

Instead of the usual formulas, this paper’s formal definition of the nurse rostering
problem is supplied by the XESTT nurse rostering data format [23]. XESTT is an
XML format which is capable of representing the instances found in all the well-
known data sets. It is based on the XHSTT high school timetabling format [30,31]; the
name ‘XESTT’ was chosen to be reminiscent of ‘XHSTT’, with ‘employee scheduling’
replacing ‘high school’. Full details of XESTT appear online [17] and will not be
repeated here. Instead, this section offers an overview, and explains the importance of
XESTT to the present work.

An XESTT instance consists of the cycle (the sequence of times that events may be
assigned); a set of resources (entities that attend events); a set of events (meetings); and
a set of constraints, specifying conditions that solutions should satisfy, and penalties to
impose when they don’t.

Each event contains a starting time, which may either be preassigned a time or
left open for a solver to assign; a duration, which is a fixed positive integer giving the
number of consecutive times, starting at the starting time, that the event is running; an
optional workload, which is a fixed non-negative integer representing the workload of
the event in arbitrary units, for example in minutes; and any number of event resources,
each specifying one resource which attends the event for the full duration, which may
either be preassigned a resource or left open for a solver to assign.

In nurse rostering instances, each resource represents one nurse, and each event
represents one shift. Each event has duration 1; its actual duration in minutes can be
expressed as a workload, if needed. Its starting time is preassigned to a time unique to
the shift. For example, if on each day there is a morning, afternoon, and night shift,
then each day will contain three times, one for each shift. Within an event, each event
resource represents a demand for one nurse.

A referee has commented that the time aspect of this mapping from nurse rostering
to XESTT seems forced. And indeed it is fair to ask why times are needed, if they are
in one-to-one correspondence with shifts. It would in fact be possible to omit times, but
here are several reasons why that would not necessarily be an improvement. Timetabling
in general is about assigning times and resources to events, and in nurse rostering it is
a fact that the events have preassigned times. If times were omitted, the properties that
times naturally have (such as belonging to a day, and chronological order) would have
to be passed on to the shifts. Also, the use of times allows constraints from other sub-



216 J. H. Kingston

disciplines of timetabling (unavailable times, for example) to be applied without change
to nurse rostering.

Arbitrary sets of times, resources, and events may be defined, called time groups,
resource groups and event groups. Each resource has one resource type, saying what
type of resource it is. In nurse rostering there is just one type, Nurse.

XESTT offers 18 constraint types, but 9 are not used in nurse rostering, mainly
because all the events have preassigned times. Of the 9 types that are used, 3 are
cover constraints, specifying the number of resources that should attend each event,
and the skills they need. The remaining 6, called resource constraints here, constrain
the timetables of individual resources, specifying unavailable times, workload limits,
unwanted patterns (for example, a day shift immediately following a night shift), limits
on the number of consecutive busy days, and so on. Considerable flexibility is available,
owing to the use of arbitrary time groups in constraints. For example, by defining one
time group holding the times of the first weekend, another holding the times of the
second weekend, and so on, one can construct a constraint which places limits on the
number of busy weekends, despite weekends not being built-in to XESTT.

Each constraint contains a Boolean required flag indicating whether it is hard or
soft, and an integer weight. When a constraint is violated, the degree of violation is
multiplied by the weight to give a cost. Algorithms aim to minimize firstly the total cost
of hard constraints (the hard cost), and secondly the total cost of soft constraints (the
soft cost). In nurse rostering, solutions with non-zero hard cost are usually considered
to be infeasible, that is, useless.

XESTT is important here for two reasons. First, it makes it easy to test KHE24 on
a wide range of instances, because all these instances have been converted from their
original formats to XESTT.

Second, XESTT uses just 9 types of constraints to represent the constraints found in
other models. It can do this because its constraints are very flexible, as instanced above
by the example of limiting busy weekends. Algorithms like the ejection chain algorithm
in this paper, which handle each constraint type explicitly, have only 9 types to handle.
Without XESTT or something like it, the number of constraint types would be much
larger, and such an approach would hardly be feasible.

3 The KHE24 solver

The KHE24 solver presented here is built on the author’s KHE solver platform and
is available from the KHE web site [20]. It is an improved version of the KHE18
nurse rostering solver [22], which itself was descended from the KHE14 high school
timetabling solver [19]. Complete details appear online, in the KHE documentation [20];
this section covers the main points.

In the KHE platform, instances and solutions are distinct objects. Instances are
immutable after creation; solutions change as solving proceeds. A solution consists of
a set of meets, each representing one event. Within each meet is a variable holding
the meet’s starting time, plus a set of tasks, one for each event resource of the meet’s
event. Each task is a variable to which one resource may be assigned; it represents an
indivisible piece of work for one resource.
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We will use ‘task’ in the following in preference to ‘shift’, because ‘shift’ is ambigu-
ous: it can mean one shift for one nurse (‘Smith and Jones swapped shifts’), or one shift
type (‘he prefers the night shift’), or one shift on one day (‘the shift passed quietly’).

KHE24 is a general timetabling solver: it assigns both times and resources. Nurse
rostering events have preassigned times, so KHE24’s time assignment part merely
converts the time preassignments in the events of the instance into time assignments in
the meets of the solution. This takes almost no time.

After time assignment comes resource assignment, which assigns resources to tasks.
KHE24 first carries out a construction phase which builds an initial assignment, then
continues with a repair phase which tries several kinds of repairs that improve that
assignment. The repair phase is run twice, to enable repairs of one kind to open the way
to repairs of other kinds.

KHE24 has many parameters (called options), settable from the command line,
determining such things as how to divide up the available running time, the maximum
number of days to include when swapping the timetables of two resources, and so on.
However, in this paper, the default values of all these options are used. There is no tuning
of parameters for different instances, or even different data sets. The only options passed
to the calls to KHE24 reported on here are those that set its time limit, the number of
solutions to make for each instance, and the number of solves to run in parallel; and
those options (except the time limit) are the same for all runs. This is an important aspect
of our claim that KHE24 could become a practical solver.

Although we usually speak of finding one solution using one run of KHE24, the
intention is that in practice several independent runs will occur in parallel, with the final
reported solution being the best of those found by the different runs. Our results (Section
4) present the best of 24 runs, for example. We stress that multiple solves are not done
just for testing; they are an integral part of the use of KHE24 in practice, included to
take advantage of the multiple cores usually found in contemporary desktop computers.

3.1 Construction using time sweep

Because of the high density of constraints in nurse rostering, it may be easier to avoid
introducing a problem than to remove it later. So it makes sense for the construction
phase to try hard to produce a very good solution [27].

Many nurse rostering constraints concern what happens over consecutive days within
nurses’ timetables. This suggests that the initial solution should be constructed day by
day—the tasks of the first day assigned first, then the tasks of the second day, and so on.
As each day is assigned, these kinds of constraints can often be satisfied. KHE24 uses
this time sweep method.

The only other use of time sweep known to the author is [27], which finds initial
solutions one week at a time in chronological order. It cites an aircrew scheduling paper
[35] as its inspiration. The time sweep idea seems to be well known, however. A referee
mentioned a similar algorithm from vehicle routing, which sweeps through drop-off
points in order of their angle from the base.

To carry out the assignments for one day, KHE24 uses weighted bipartite matching.
Each task B running on that day is a demand node, each resource A is a supply node,
and an edge joins B to A when assigning A to B is possible. The edge is weighted by the
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change (often negative) in solution cost that the assignment would produce. A matching
of minimum total cost is found and used to determine the assignments of resources to
tasks on that day. Further details may be found in the earlier paper [22].

3.2 Task grouping

The KHE platform allows tasks to be grouped. Assigning a resource to one element of
a group assigns it to all. Grouping was included to support high school timetabling: the
lessons of one course should be assigned a common teacher. It has also proved useful in
nurse rostering.

For example, in instance COI-GPost (Section 4.1), a nurse who takes a night task on
a Friday should also take night tasks on the next two nights. This is because constraints
penalize Friday night tasks before free weekends, incomplete weekends (working on
Saturday or Sunday but not both), and day tasks after night tasks. Then the Monday and
Tuesday night tasks can be grouped, as can the Wednesday and Thursday night tasks,
owing to limits (minimum 2 and maximum 3) on the number of consecutive night tasks.

KHE24 has a grouping phase which precedes time sweep. It runs quickly but is
general enough to be widely useful. For example, it groups the tasks of solutions of
instance COI-GPost following the line of argument just given. The full details are rather
intricate. They appear in the earlier paper [22].

A grouping will occasionally be inadvisable for some unexpected reason. So KHE24
applies the groupings during the construction and first repair phases, but then removes
them, so that if something else is needed there is a chance to find it during the second
repair phase. The author has observed a few cases where omitting to remove groupings
led to infeasible solutions.

3.3 Repair using ejection chains

After constructing an initial solution using time sweep, KHE24 repairs it using two
methods. The most effective of these is ejection chain repair. Although KHE18 also
used ejection chain repair, the details were not settled and the published description was
quite sketchy. KHE24’s version is much more settled, so this section presents it in detail.

A defect in a solution is one violation of a constraint. For example, if nurse N2 should
work at most two weekends but in fact works three, that is a defect.

A repair is a change to a solution which removes a defect. For example, unassigning
one of nurse N2’s busy weekends repairs the defect just described.

An ejection chain is like a path in a graph where each node represents one defect
and each edge represents one repair. Starting from some defect, the first repair removes
that defect but introduces one new defect. The second repair removes that defect but
introduces another new defect, and so on. If some repair removes a defect without intro-
ducing a new defect, then the chain ends successfully: the solution has been improved.
Or if the repair of one defect introduces two or more new defects, then the chain ends un-
successfully: the repair has to be undone, with no improvement. (More precisely, a chain
ends successfully whenever the current solution cost is less than it was at the start of the
chain; new defects are acceptable, if their cost is low. A chain may be extended whenever
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a repair introduces a new defect whose removal would make the current solution cost
less than it did at the start of the chain.)

There are usually several ways to repair a defect. For example, nurse N2’s defect can
be repaired by unassigning any one of the three busy weekends. So finding a successful
chain involves a search tree: if the first repair does not begin a successful chain, then the
second is tried, and so on recursively.

The main loop of the ejection chain repair algorithm visits each defect of the current
solution and attempts to remove it by searching a tree of ejection chains, stopping at
the first successful chain, if any. It cycles around the defects until a complete cycle of
attempts has failed, at which point it terminates.

There are several ways to limit the method to polynomial time. The usual one, which
KHE24 uses, is to refuse to visit the same part of the solution twice while repairing a
given defect [18,19]. There is also a time limit (Section 3.5).

Each type of constraint gives rise to one type of defect (or two: maximum and
minimum limit violations are repaired differently). For each defect, a set of repairs
suited to its type is tried, making the chains polymorphic.

At the lowest level, just one basic operation can change a solution: the task move,
which changes the assignment of task B from resource A1 to resource A2, where A1 < A2.
Here A1 may be NULL, in which case the task move is also a task assignment; or A2 may
be NULL, making it also a task unassignment. One repair is (can only be) a set of these
basic operations.

Several authors (see below) use a swap of the timetables of two resources over several
consecutive days as their main repair operation. KHE24 also does this; the maximum
number of days is 16. It also tries assignments to a resource A2 over several days, and
unassignments of a resource A1 over several days. In these cases, the maximum number
of days is much smaller, just 4. All these operations are sets of task moves.

Unlike metaheuristics, which choose repairs at random, KHE24’s ejection chain
algorithm is quite focused. It finds all small repairs (minimal repairs that correct the
current defect, typically affecting just one or two days), and then for each small repair it
tries a set of alternative large repairs, defined by expanding each small repair: making
the same change over a larger set of adjacent days including the original ones. Simple
checks ensure that the same large repair is almost never tried twice when repairing a
given defect.

It is not hard to find suitable small repairs, as was done above for nurse N2’s busy
weekends. If a resource A is overloaded during some set of times (one day, weekend, or
whatever), all small repairs are tried that either unassign A during those times or swap
its timetable on those times’ days with another resource which is free then (or in some
cases less busy). If A is underloaded during some set of times, all small repairs are tried
that either assign A to some unassigned task during those times or swap its timetable on
those times’ days with some other resource which is busier then. Expanded versions of
these two kinds of repairs are used to repair all kinds of resource constraint defects. For
example, if A has too many consecutive night shifts, that is treated as A being overloaded
during the times of the two endpoints of the over-long sequence.
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Cover constraint defects are handled similarly. For example, a task needing assign-
ment is handled by finding all small repairs that assign a suitable resource to the task,
then expanding that assignment over adjacent days.

It is common for several tasks to be equivalent, in the sense that the effect of assigning
any given resource to any one of them is the same. For example, if the Thursday night shift
demands one senior nurse and three ordinary nurses, there will be one task requiring
a senior nurse which is not equivalent to any other task, and three equivalent tasks
demanding ordinary nurses. If the demand is for two or three ordinary nurses, then the
three tasks are still equivalent but there is a preference to assign resources to the first
two rather than to the third. In such cases the ejection chain solver will try one repair
per equivalence class, not one repair per task, saving time.

The author knows of three other papers that use ejection chains in nurse rostering.
The first two are fairly old and use data sets that are not in use today, making their results
hard to evaluate. One [12] includes a repair which swaps the timetables of two resources
over one week. The other [28] uses chains of task moves in a tabu search framework.
The chains are rather different from those used here: each is generated at random in a
way that preserves coverage, but without checking other costs until the whole chain is
generated. Reference [28] cites [1] as a source for these chains—a very early use. The
third previous use of ejection chains [3,4,7] is much more recent. Its basic repair swaps
the timetables of two resources over a variable number of consecutive days.

3.4 Repair using optimal reassignment

There is a dynamic programming algorithm, well known to those who use column
generation to solve nurse rostering problems, for finding an optimal assignment of tasks
to a single nurse, given fixed timetables for the other nurses. The author has recently
generalized this algorithm to find an optimal reassignment of an arbitrary subset of the
nurses on an arbitrary subset of the days of the cycle, leaving the other nurses and the
other days fixed [25].

The algorithm described in [25] was deficient in one respect: it did not support the
XESTT limit workload constraint, which limits total workload measured in arbitrary
units, for example minutes. This deficiency is now fixed.

Analysis shows that the running time of this algorithm is polynomial in the number
of days it reassigns, but exponential in the number of resources it reassigns [25]. The
author’s practical experience bears this out: it costs very little to reassign a few more
days, but reassigning just one more resource can increase the running time dramatically.
Disappointingly, despite the author’s best attempts at optimization, he has been able to
reliably reassign up to only three resources, although for a practically unlimited number
of days.

Using this algorithm, the author has implemented a VLSN search which chooses
3 resources and 28 consecutive days at random, optimally reassigns those resources
over those days, and then repeats using new random choices until time runs out or
50 consecutive attempts produce no improvement. It is nowhere near as effective as
ejection chains, but it operates on quite different principles and occasionally makes a
contribution.
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3.5 Making good use of available running time

Running time is a major issue for the larger instances, so it must be used well. Each of
KHE24’s phases yields diminishing returns as its running time increases, so it would be
a mistake to spend all of the available time on one phase and have nothing left for the
others.

KHE24 limits each day during time sweep (including repairs associated with that
day) to 3 seconds. Two-thirds of the remaining time is then given to the first repair
phase, and one-third to the second. Within these phases, the two repair methods (ejection
chains and optimal reassignment) get equal time. If ejection chains finish early, optimal
reassignment gets the surplus.

The ejection chain algorithm of [7] imposes a time limit on each search for a chain
that repairs one defect. KHE24 imposes a limit of 120 on the number of recursive calls
when repairing one defect, which has a similar effect.

Actual running time need not match the time limit exactly. On the one hand, a phase
will often end of its own accord well before its time limit. On the other, the time limits
are soft: instead of being interrupted, each phase consults wall clock time periodically
and decides for itself whether to stop. In practice, KHE24 never significantly overruns
its time limit, as the actual running times reported in the results tables of Section 4 will
show.

3.6 Randomization

Randomization is not stressed in algorithmic solvers like it is in, for example, metaheuris-
tic ones. Still, including some randomization allows the algorithm to be run multiple
times with different seeds to obtain different results. Doing this and keeping the best
solution is a simple way to utilize multiple cores and trade off solution quality and
running time.

For example, ejection chain repair randomizes by trying alternative repairs starting
at a random point in the sequence of possible repairs. Similar methods are used in the
other phases. These methods are not deep, but they seem to work, judging from the
spread of solution costs they produce.

4 Results

This section presents the results of running KHE24 on several well-known sets of
instances, after conversion to XESTT by the NRConv program [21,23], with comparisons
with previous results. The converted instances and solutions are available, in the form
of XESTT archive files, at [21].

Our aim here is not to find new best solutions, but rather to achieve success in
practice, which means to find good solutions to a wide variety of real-world instances
quickly. This idea has been formalized by the author [26] as follows:

A solver is successful in practice if, on every instance that is likely to be
encountered in practice, it finds a solution whose cost is within 10% of the best
known when run for 5 minutes, and within 5% of the best known when run for
60 minutes.
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A justification appeared in [26], but since the idea is somewhat novel, yet crucial to this
paper, we’ll discuss it now in some detail.

The basic idea, then, is that a solver satisfying these conditions can be used by
practitioners with confidence that it will work well on their instances. Running for 5
minutes will produce a solution suitable for testing a possible scenario; running for 60
minutes will produce a solution for actual use which is not easy to distinguish from the
best known solution. (If all constraints have the same weight, being within 5% means
that for every 20 defects in the best known solution, there are 20 or 21 defects in the
solver’s solution.)

This definition of success in practice is not realistic in one case: when the best known
solution has no defects, or just a few. In that case, in reality a solution would be considered
successful in practice if it contained just a few more defects, whatever the percentage
is. For example, the best known solution to instance COI-GPost (Section 4.1) has cost
5. KHE24’s solution has cost 8, which in reality would be judged to be successful in
practice, even though it is numerically 60% worse. Rather than complicating the rule to
take account of such cases, we’ll simply point them out as they arise.

Our task, then, is to evaluate the KHE24 solver against this standard of success in
practice. As a proxy for ‘every instance that is likely to be encountered in practice’, we
intend to test the solver on four widely used data sets, although in this paper we only
test on two data sets and part of a third. And for ‘best known solutions’ we will use sets
of solutions from other authors which are either the best, or among the best known.

KHE24 (as described in Section 3) is run 24 times on each instance, with a different
random seed for each run, and the best of the 24 solutions is kept. We call this version
of the solver KHE24x24. We stress that running multiple solves in parallel and keeping
the best solution is an integral part of our solving strategy, not something we are doing
merely to gain insight into the variability of the solver (although that is an interesting
question worthy of investigation).

Twelve threads are used, running on the author’s 12-core Intel i7-12700 processor.
(The Intel web site gives several clock frequencies, from 1.6GHz to 4.9GHz, chosen
depending on various factors including temperature, so it’s hard to be definite about
processor speed.) Each individual solve is given a time limit which is half the overall
time limit (half of either 5 minutes or 60 minutes). For each instance, the reported
running time is the wall clock time in seconds from the start of the first solve to the end
of the last one. It does not include file read and write times; they are negligible.

Each result table was generated by the author’s HSEval program from an XESTT
archive file and included with no hand editing. A blank entry indicates that there is
no solution for the instance of its row in the solution group of its column. If there are
multiple solutions, one with minimum running time among all solutions with minimum
cost is shown. The minimum solution costs in each row appear in bold. Any solutions
with non-zero hard cost are shown as ‘inf.’ (infeasible). No costs are reported on trust;
all are calculated from the solutions in the archive file, and hence verified, by HSEval.

Adjacent to each cost 2, in the ‘Rel.’ column, is a relative cost: the value of 2 divided
by the best cost in the row, when the best cost is non-zero. When KHE24x24 is run for
5 minutes, a relative cost of up to 1.10 represents success in practice; when it is run for
60 minutes, 1.05 represents success in practice.
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Running times are shown (in seconds) where present in the archive. HSEval cannot
verify them. KHE24x24 running times are as defined above.

Care is needed with the average costs at the foot of each table, since costs are sensitive
to the scale of the constraint weights. Constraints that measure workload in minutes may
produce costs in the thousands.

4.1 The Curtois original instances

The Curtois original instances are the instances available online at [8] under the heading
‘Original instances.’ Their XESTT versions appear in XESTT archive file COI.xml at
[21], along with the solutions posted with the instances. Nearly all of these solutions are
optimal, according to Table 3 of [4].

Table 1 compares KHE24x24’s solutions with the solutions from [8]. It is important
to analyse what is happening, and not simply take these results at face value. Several
cases of a phenomenon described earlier, arising when the best known solution has very
low cost, occur here. For example, KHE24 is successful in practice on the Post and
Ikegami instances, even though the relative costs are numerically high. Also, in every
solution of COI-WHPPwith cost below 1000, some nurses must take night shifts only, and
the rest must take non-night shifts only—hardly a real-world scenario. (The author has
addressed this issue with COI-WHPP in work carried out after this table was produced.)

In summary, KHE24 is successful in practice, or nearly so, on most of the Cur-
tois original instances, the main exceptions being the larger ones, such as COI-ERMGH,
COI-CHILD, COI-ERRVH, and COI-MER. The large differences in cost between the 5-
minute and 60-minute runs on these instances suggest that their large size is overwhelm-
ing the solver, although further analysis is needed. The Curtois original instances are
rarely used for testing these days, which is a pity, considering how interesting and varied
they are.

4.2 The First International Nurse Rostering Competition

The First International Nurse Rostering Competition [14] has published many instances,
still available from the competition web site [13]. XESTT versions are available in files
INRC1-Long-And-Medium.xml and INRC1-Sprint.xml [21], along with the GOAL
research group’s virtually optimal solutions [37].

Tables 2 and 3 show KHE24’s results. Running times are not given for the GOAL
solutions because the GOAL solution files do not contain any; but the GOAL web site
has a table of running times. About 10 instances, from the Long and Medium sets, have
running times of about 4 hours. Many others have running times under one minute, often
well under.

Another source of virtually optimal solutions to these instances is the branch and
price algorithm whose results are reported in Table 5 of [4]. The author has not tried
to obtain these solutions. Their reported running times are better than the GOAL ones,
never exceeding about 10 minutes.

KHE24 is generally successful in practice on these instances, although once again
there are some exceptions, including INRC1-LH04, INRC1-LH05, INRC1-MH01, and
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Table 1: Results of running KHE24x24 on the Curtois original instances. Column Misc
shows the best solutions from XESTT archive file COI.xml, taken from Curtois’ web
site [8]. The other columns show the results for KHE24x24, running for 5 minutes and
60 minutes. Here and elsewhere, running times are in seconds. This table is derived
from XESTT archive file KHE24-2024-03-07-COI.xml, available at [21].

Instances (27) Misc KHE24x24-05 KHE24x24-60
Cost Rel. Time Cost Rel. Time Cost Rel. Time

COI-Ozkarahan 0 1.00 - 0 1.00 0.1 0 1.00 0.1
COI-Musa 175 1.00 - 175 1.00 15.9 175 1.00 16.9
COI-Millar-2.1 0 1.00 1.0 0 1.00 6.8 0 1.00 7.3
COI-Millar-2.1.1 0 1.00 - 0 1.00 0.0 0 1.00 0.0
COI-LLR 301 1.00 10.0 301 1.00 46.5 301 1.00 50.8
COI-Azaiez 0 1.00 600.0 0 1.00 300.1 0 1.00 1800.0
COI-GPost 5 1.00 - 8 1.60 143.5 8 1.60 139.4
COI-GPost-B 3 1.00 - 5 1.67 157.5 5 1.67 1800.0
COI-QMC-1 13 1.00 - 16 1.23 70.6 16 1.23 62.5
COI-QMC-2 29 1.00 - 30 1.03 44.1 30 1.03 43.5
COI-WHPP 5 1.00 - 2001 400.20 300.1 2001 400.20 3600.1
COI-BCV-3.46.2 894 1.00 17840.0 896 1.00 300.1 894 1.00 3600.1
COI-BCV-4.13.1 10 1.00 - 10 1.00 300.1 10 1.00 3600.1
COI-SINTEF 0 1.00 - 0 1.00 6.9 0 1.00 7.4
COI-ORTEC01 270 1.00 105.0 300 1.11 174.3 295 1.09 211.4
COI-ORTEC02 270 1.00 - 295 1.09 154.3 295 1.09 158.8
COI-ERMGH 779 1.00 124.0 1481 1.90 301.7 882 1.13 3600.4
COI-CHILD 149 1.00 - 2824 18.95 324.8 261 1.75 3600.3
COI-ERRVH 2001 1.00 - 6739 3.37 307.7 2219 1.11 3829.4
COI-HED01 136 1.00 - 138 1.01 254.3 136 1.00 1824.7
COI-Valouxis-1 20 1.00 - 100 5.00 300.0 100 5.00 866.1
COI-Ikegami-2.1 0 1.00 13.0 0 1.00 150.0 0 1.00 1800.1
COI-Ikegami-3.1 2 1.00 21600.0 10 5.00 300.1 9 4.50 3600.3
COI-Ikegami-3.1.1 3 1.00 2820.0 14 4.67 300.2 15 5.00 3600.5
COI-Ikegami-3.1.2 3 1.00 2820.0 15 5.00 300.1 10 3.33 3600.4
COI-BCDT-Sep 100 1.00 - 230 2.30 300.1 210 2.10 3600.3
COI-MER 7081 1.00 36002.7 56048 7.92 406.4 13840 1.95 3616.5
Average 454 1.00 2653 17.52 195.0 804 16.47 1801.4
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Table 2: Results for the Long and Medium instances of the First International Timetabling
Competition. The GOAL column shows the solutions from the GOAL research group
web site [37], which the GOAL group has shown to be virtually optimal. The other
columns show the results for KHE24x24, running for 5 minutes and 60 minutes.
This table is derived from the instances and solutions stored in XESTT archive file
KHE24-2024-03-07-INRC1-Long-And-Medium.xml, available at [21].

Instances (30) GOAL KHE24x24-05 KHE24x24-60
Cost Rel. Cost Rel. Time Cost Rel. Time

INRC1-L01 197 1.00 199 1.01 222.4 199 1.01 405.5
INRC1-L02 219 1.00 227 1.04 219.9 225 1.03 775.3
INRC1-L03 240 1.00 240 1.00 226.0 240 1.00 480.4
INRC1-L04 303 1.00 305 1.01 219.1 304 1.00 740.4
INRC1-L05 284 1.00 285 1.00 218.4 285 1.00 686.9
INRC1-LH01 346 1.00 367 1.06 237.4 354 1.02 2471.2
INRC1-LH02 89 1.00 95 1.07 249.3 93 1.04 2192.8
INRC1-LH03 38 1.00 44 1.16 235.8 42 1.11 1779.7
INRC1-LH04 22 1.00 33 1.50 229.8 30 1.36 1741.4
INRC1-LH05 41 1.00 52 1.27 224.4 47 1.15 1957.4
INRC1-LL01 235 1.00 252 1.07 235.9 246 1.05 2451.3
INRC1-LL02 229 1.00 250 1.09 239.2 238 1.04 2455.2
INRC1-LL03 220 1.00 262 1.19 248.3 244 1.11 2445.9
INRC1-LL04 222 1.00 256 1.15 235.3 237 1.07 2443.1
INRC1-LL05 83 1.00 87 1.05 245.0 84 1.01 1908.4
INRC1-M01 240 1.00 243 1.01 179.2 243 1.01 186.1
INRC1-M02 240 1.00 244 1.02 182.2 244 1.02 214.9
INRC1-M03 236 1.00 239 1.01 180.2 239 1.01 197.4
INRC1-M04 237 1.00 240 1.01 182.3 240 1.01 198.8
INRC1-M05 303 1.00 308 1.02 209.3 308 1.02 285.8
INRC1-MH01 111 1.00 140 1.26 219.2 132 1.19 1471.3
INRC1-MH02 221 1.00 237 1.07 226.9 231 1.05 1040.9
INRC1-MH03 34 1.00 41 1.21 208.9 41 1.21 301.0
INRC1-MH04 78 1.00 85 1.09 218.8 85 1.09 458.2
INRC1-MH05 119 1.00 130 1.09 222.7 132 1.11 1102.9
INRC1-ML01 157 1.00 170 1.08 234.0 163 1.04 1079.7
INRC1-ML02 18 1.00 26 1.44 139.6 26 1.44 241.2
INRC1-ML03 29 1.00 35 1.21 125.7 35 1.21 141.5
INRC1-ML04 35 1.00 41 1.17 183.5 41 1.17 330.8
INRC1-ML05 107 1.00 114 1.07 217.6 114 1.07 1309.5
Average 164 1.00 175 1.11 213.9 171 1.09 1116.5
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Table 3: Results for the Sprint instances of the First International Timetabling Com-
petition. Details as for Table 2. This table is derived from XESTT archive file
KHE24-2024-03-07-INRC1-Sprint.xml, available at [21].

Instances (30) GOAL KHE24x24-05 KHE24x24-60
Cost Rel. Cost Rel. Time Cost Rel. Time

INRC1-S01 56 1.00 56 1.00 42.0 56 1.00 48.1
INRC1-S02 58 1.00 58 1.00 38.5 58 1.00 38.1
INRC1-S03 51 1.00 51 1.00 50.2 51 1.00 50.4
INRC1-S04 59 1.00 59 1.00 44.1 59 1.00 44.9
INRC1-S05 58 1.00 58 1.00 49.7 58 1.00 50.4
INRC1-S06 54 1.00 54 1.00 52.0 54 1.00 50.5
INRC1-S07 56 1.00 56 1.00 46.9 56 1.00 45.3
INRC1-S08 56 1.00 56 1.00 40.4 56 1.00 40.4
INRC1-S09 55 1.00 55 1.00 59.1 55 1.00 61.5
INRC1-S10 52 1.00 52 1.00 46.8 52 1.00 46.7
INRC1-SH01 32 1.00 34 1.06 31.6 34 1.06 31.4
INRC1-SH02 32 1.00 32 1.00 30.0 32 1.00 29.8
INRC1-SH03 62 1.00 62 1.00 42.7 62 1.00 42.3
INRC1-SH04 66 1.00 67 1.02 58.6 67 1.02 58.1
INRC1-SH05 59 1.00 59 1.00 54.2 59 1.00 54.2
INRC1-SH06 130 1.00 134 1.03 59.8 134 1.03 58.7
INRC1-SH07 153 1.00 153 1.00 53.0 153 1.00 52.6
INRC1-SH08 204 1.00 206 1.01 124.2 206 1.01 127.4
INRC1-SH09 338 1.00 338 1.00 149.7 338 1.00 223.6
INRC1-SH10 306 1.00 306 1.00 72.3 306 1.00 70.0
INRC1-SL01 37 1.00 38 1.03 50.5 38 1.03 50.2
INRC1-SL02 42 1.00 43 1.02 37.4 43 1.02 36.8
INRC1-SL03 48 1.00 49 1.02 51.5 49 1.02 53.9
INRC1-SL04 73 1.00 73 1.00 139.8 73 1.00 231.6
INRC1-SL05 44 1.00 45 1.02 48.9 45 1.02 46.0
INRC1-SL06 42 1.00 42 1.00 20.2 42 1.00 20.0
INRC1-SL07 42 1.00 43 1.02 35.8 43 1.02 34.4
INRC1-SL08 17 1.00 17 1.00 19.4 17 1.00 19.8
INRC1-SL09 17 1.00 17 1.00 19.0 17 1.00 18.8
INRC1-SL10 43 1.00 43 1.00 31.0 43 1.00 32.5
Average 78 1.00 79 1.01 53.3 79 1.01 58.9
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INRC1-ML02. Analysis of these cases is needed. On the Sprint instances, running for 60
minutes is never better than running for 5.

4.3 The Second International Nurse Rostering Competition

The Second International Nurse Rostering Competition [5,6] was notable for requiring
its instances to be solved week by week, as occurs in the real world. However, here we
focus on a set of conventional 4-week and 8-week instances from the competition that
have been tackled by several authors [27,38]. Their converted versions appear in files
INRC2-4.xml and INRC2-8.xml at [21], along with some solutions produced by the
authors of [27].

Table 4: Results for the Second International Timetabling Competition 4-week instances.
The LOR17 column shows the solutions obtained from the authors of [27]. Table derived
from archive file KHE24-2024-03-07-INRC2-4.xml, available at [21].

Instances (20) LOR17 KHE24x24-05 KHE24x24-60
Cost Rel. Cost Rel. Time Cost Rel. Time

INRC2-4-030-1-6291 1695 1.00 2040 1.20 300.1 1865 1.10 3600.1
INRC2-4-030-1-6753 1890 1.00 2230 1.18 300.1 2005 1.06 3600.2
INRC2-4-035-0-1718 1425 1.00 1835 1.29 300.1 1590 1.12 3600.2
INRC2-4-035-2-8875 1155 1.00 1535 1.33 300.1 1360 1.18 3600.1
INRC2-4-040-0-2061 1685 1.00 2125 1.26 300.1 1875 1.11 3600.1
INRC2-4-040-2-6106 1890 1.00 2360 1.25 300.1 2020 1.07 3600.1
INRC2-4-050-0-0487 1505 1.00 2015 1.34 300.1 1745 1.16 3600.1
INRC2-4-050-0-7272 1500 1.00 1975 1.32 300.1 1690 1.13 3600.1
INRC2-4-060-1-6115 2505 1.00 3335 1.33 300.2 2840 1.13 3600.2
INRC2-4-060-1-9638 2750 1.00 3785 1.38 300.2 3165 1.15 3600.2
INRC2-4-070-0-3651 2435 1.00 3225 1.32 300.1 2850 1.17 3600.1
INRC2-4-070-0-4967 2175 1.00 3035 1.40 300.1 2565 1.18 3600.1
INRC2-4-080-2-4333 3340 1.00 4015 1.20 300.1 3775 1.13 3600.3
INRC2-4-080-2-6048 3260 1.00 4230 1.30 300.1 3750 1.15 3600.2
INRC2-4-100-0-1108 1245 1.00 2100 1.69 300.2 1670 1.34 3600.2
INRC2-4-100-2-0646 1950 1.00 2700 1.38 300.2 2275 1.17 3600.2
INRC2-4-110-0-1428 2440 1.00 3245 1.33 300.2 2755 1.13 3600.2
INRC2-4-110-0-1935 2560 1.00 3550 1.39 300.2 3015 1.18 3600.2
INRC2-4-120-1-4626 2170 1.00 3060 1.41 300.2 2600 1.20 3600.3
INRC2-4-120-1-5698 2220 1.00 3140 1.41 300.2 2650 1.19 3600.2
Average 2090 1.00 2777 1.34 300.1 2403 1.15 3600.2

The results for the 4-week instances appear in Table 4. There is no running time
information in the solution files obtained from other authors. Reference [27] gives a
formula that was used to determine the running time limit; it is about 20 minutes for
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the largest 4-week instances. Reference [38] used a running time limit of 2750 seconds
(about 45 minutes).

KHE24’s results are disappointing, relative to the best known solutions and to the
author’s own testing. For example, the cost of the 5-minute solution to instance INRC2-
4-030-1-6291 reported here is 2040 (Table 4), but in other 5-minute tests the author has
obtained solutions whose cost is as low as 1785. This problem will probably be easy to
fix, but the paper submission deadline intervened before the the author had time to fix it.

Sadly, the publication deadline has prevented the author from tackling the 8-week
instances with KHE24x24. A few preliminary tests have revealed that KHE24x24’s
solutions are not currently competitive. The author’s experience with other data sets
suggests that detailed analysis will reveal concrete areas in which the algorithm is
performing poorly, whose improvement will lead to more competitive results. However
this is speculation at present.

4.4 The 2014 Curtois and Qu instances

The instances here are the 24 instances published in 2014 by Curtois and Qu [7,8].
Converted versions appear in file CQ14.xml, which also holds four sets of solutions
received from Curtois via private correspondence.

Again, the publication deadline has prevented the author from presenting results for
this data set. He does not have even preliminary results to report.

There are more recent results for these instances [8,10,11]. Reference [8] has slightly
better results than the ones in file CQ14.xml, with lower bounds. The bounds show that
many of the results are optimal, although the last five instances, which are much larger
than the others, still have significant optimality gaps. We regard those last five instances
as not relevant to the concerns of this paper, since they have cycles of 26 and 52 weeks,
much longer than is encountered in practice.

5 Conclusion

This paper has presented KHE24, a nurse rostering solver which aims to find very good
but not optimal solutions quickly across a wide range of instances. Polynomial-time
methods are used: time sweep for the initial assignment, and ejection chains and optimal
reassignment using dynamic programming for repair. No parameter tuning is needed.

The results so far give hope that the solver will eventually be successful in practice
(that is, taking cost, running time, and breadth of application into account). At the time of
writing, however, many tests are missing, and for some of those the author’s preliminary
results are uncompetitive. There are some worrying tendencies: relative solution cost
seems to deteriorate as instance size increases, and the solver does not always make
effective use of the longer (60-minute) running time. The author is actively continuing
this work.
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1 Introduction

Local search algorithms, which are often utilized to generate solutions for the nurse
rostering problem, rely heavily on the value the evaluation function produces at each
iteration. The speed of the evaluation process directly correlates with the number of
iterations such algorithms can perform and, consequently, the quality of the solutions
that are ultimately obtained. While the evaluation can be performed in a number of
different ways, almost no publications report how they do so. Moreover, the significance
of the evaluation approach extends beyond performance, with the reproducibility of
algorithms and their results negatively affected when this design choice goes unreported.

Burke et al. [1] introduced a generalized constraint evaluation model for nurse
rostering. It is one of the few counterexamples to the lack of reporting on evaluation
functions. The model focuses on a flexible and user-friendly way to handle the evaluation
of rosters. It re-evaluates the entire roster of at least one nurse after each update. We
believe we can further increase the evaluation performance.

We introduce an efficient approach to constraint evaluation in local search algorithms,
and leverage our results to highlight the importance of disclosing evaluation techniques.
By accelerating the evaluation process, we aim to achieve better results with existing
algorithms in time-constrained scenarios. We will demonstrate how it is worth treating
one’s evaluation approach as a design decision, given the tangible impact it has on the
effectiveness of an algorithm.

2 Problem context

To evaluate nurse rostering solutions appropriately and efficiently, it is necessary to
consider both the (soft) constraint type and the nature of the modification. The constraint
types we take into consideration are those described by Bilgin et al. [2], which accurately
model many real-world restrictions:

– Counters: constrain the number of occurrences of a specified set of assignments.
– Series: constrain the number of consecutive occurrences of a specified set of as-

signments.
– Successive series: constrain the consecutive occurrences of disjoint series.
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Note that we treat these constraints as soft constraints and that the degree of their violation
determines the significance of the penalty. The evaluation function is a weighted sum of
all penalties.

The modifications we consider are single assignment modifications: changing,
adding, or removing a single shift on a day in a nurse’s roster. Compound moves
such as swaps can be created by simply linking together multiple modifications.

It is possible to assess the impact of one’s evaluation function on instances from
various existing datasets. The instances and constraints from Bilgin et al. [2], often
referred to as the KaHo instances, and those from the international nurse rostering
competition [3] all exclusively contain constraints that can be expressed as one of the
three aforementioned general types and will therefore be used for the benchmarking
process.

3 Evaluation methods

The most straightforward approach to constraint evaluation is to re-evaluate the entire
solution after each update. This method is easy to implement and requires no extra
logic besides the evaluation itself. However, upon closer inspection, the method requires
many unnecessary computations. The evaluation can therefore easily be improved by
recalculating only the penalties in the roster of the affected nurse. Figure 1 provides a
side by side comparison of these two approaches.

Nurses

Days

(a) Full roster evaluation.

Nurses

Days

(b) Partial roster evaluation.

Fig. 1: Evaluation comparison

While evaluating only a single nurse’s roster is a step in the right direction, mod-
ifications seldom impact all constraints associated with a nurse’s roster. In pursuit of
greater efficiency, we consequently propose a delta-evaluation method that only iterates
over both the constraints and the days that are affected by the modification. The method
has the potential to dramatically accelerate iterative improvement algorithms for nurse
rostering and other timetabling problems. Figure 2 provides a visual example of our
proposed delta-evaluation method. The method will be detailed at the conference.
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Nurses

Days

Fig. 2: Delta evaluation.

4 Preliminary results

The number of iterations per time unit impacts the number of iterations one can perform
and, ultimately, the final solution quality attained. For the following benchmarking
excercise, a single iteration consists of applying a random feasible modification and
recalculating the roster penalty. There is no overarching search algorithm present in
these experiments because we are simply counting the number of completed random
iterations. We compare our delta-evaluation with the speed of evaluating the roster of
a single nurse. By way of example, Table 1 documents the average evaluation speedup
over ten 1-second runs per instance from the KaHo dataset.

Table 1: Evaluation speedup per instance.
Instance # Days # Nurses Speedup

Hospital1-Emergency-Absence 28 27 x4.35
Hospital1-Emergency-Normal 28 27 x4.40
Hospital1-Emergency-Overload 28 27 x4.40
Hospital1-Geriatrics-Absence 28 21 x3.73
Hospital1-Geriatrics-Normal 28 21 x4.00
Hospital1-Geriatrics-Overload 28 21 x3.99
Hospital1-Meal Preparation-Absence 29 32 x3.34
Hospital1-Meal Preparation-Normal 29 32 x3.25
Hospital1-Meal Preparation-Overload 29 32 x3.57
Hospital1-Psychiatry-Absence 31 19 x5.89
Hospital1-Psychiatry-Normal 31 19 x5.91
Hospital1-Psychiatry-Overload 31 19 x6.19
Hospital1-Reception-Absence 42 19 x7.32
Hospital1-Reception-Normal 42 19 x7.37
Hospital1-Reception-Overload 42 19 x7.56
Hospital2-Palliative Care-Absence 91 27 x13.65
Hospital2-Palliative Care-Normal 91 27 x13.90
Hospital2-Palliative Care-Overload 91 27 x13.34
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Evaluating a single nurse’s entire roster leaves room for improvement, as the delta-
evaluation outperforms it on every instance in the dataset. Indeed, our worst case per-
formance would equal that of the partial roster evaluation. As the time horizon of an
instance lengthens, the delta-evaluation eliminates the need to evaluate a greater propor-
tion of days and therefore results in more significant speedups. The new delta-evaluation
method can be applied within any iterative algorithm for roster optimization.
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1 Introduction

The University Course Timetabling Problem (UCTTP) involves assigning events (such
as lectures and seminars) to times and locations along with assigning staff and students
to these events. One approach to formulating this mathematically is to model the problem
as a Mixed Integer Linear Program (MILP) [1]. Given the resulting complexity of the
problem for real-life instances, heuristic approaches have been proposed to solve the
problem [2].

One matheuristic used is known as fix-and-optimise [4] where neighbourhoods are
allowed to improve while the rest of the solution is unchanged. Typically, this has been
used as part of a single-objective approach. However, the UCTTP can be modelled as
a multi-objective problem. Trade-offs in conflicting objectives can be found using an
n-constraint approach but this is hard when working with many objectives.

In a decision support context, it is desirable to quickly find these trade-offs by gen-
erating an approximation(s) of the Pareto frontier(s). Generating high-quality frontiers
allows decision-makers to understand the trade-offs so the most desirable timetable for
implementation can be selected.

We propose a method that leverages the gradual improvement of fix-and-optimise to
search the objective space but still allows for elements of n-constraint approaches to be
added and removed when needed. This results in a matheuristic approach suitable for
any many-objective problem.

2 Problem description

The details of the specific UCTTP we are solving here are described in [3]. The key
aspect of the UCTTP in this paper is incorporating hybrid teaching, where classes can
happen in-person, online or in a hybrid mode. In this model, students can express a
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preference for a certain mode of study. For this reason, we focus on the following three
objectives:

I1: Maximise total module attendance.
I2: Minimise total number of deviations from mode preferences.
I3: Minimise total number of student scheduling issues.

3 Method description

The method requires at least one feasible solution as input. We understand that this itself
is not a trivial task for any UCTTP however many techniques have been proposed [2].
We will assume that the (approximate) nadir point is known. The flowchart in Figure 1
outlines the general structure of the method.

Start
Constrain 

objectives to be 
better than nadir

Select objective to 
improve

Further constrain 
other objectives 

(optional)

Select a 
neighbourhood to 

optimise over

Use solver to find 
a new solution

Save the new 
solution that is 

found

Iteration limit 
reached?

Return all the 
solutions foundEnd

Yes

No

Fig. 1: Flowchart providing an overview of the method.

The pseudocode presented in Algorithm 1 describes a simple variant of this method.
There are two comments on this pseudocode. These indicate the key places where
more sophisticated selection methods could be used instead of random selection. The
combined use of neighbourhoods and unconstrained objectives allows for small changes
in objectives like an n-constraint approach.

4 Method demonstration

The instance for this demonstration is a modification of the instance mary-fal18 from
the fourth International Timetabling Competition [5]. The significant changes are that
we only consider 400 students and reduce physical room capacity fourfold (for details
see [3]). The initial solutions are four lexicographic solutions (see Table 1) and using
the objective values for these solutions we can obtain the exact nadir point. The method
used for the demonstration is described in Algorithm 1. We have |( | = 4 and use the
parameters � = 50, ' = 5 and # = 99. This produces a new pool of solutions (=4F . Any
solution in (=4F dominated by another solution in this set is removed. The results were
found with a machine with Ubuntu 22.04.1 LTS using an Intel(R) Xeon(R) Gold 6248R
CPU running at 3.00GHz and 16GB of RAM. The method was implemented in Python
3.10.12 using Gurobi 10.0.2.

This run of the method yields 68 non-dominated alternative solutions. It can be shown
that some of the non-dominated solutions were found after visiting what would turn out
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Algorithm 1: Pseudocode for simple variant of method
Input: Set of initial solutions (, # iterations �, # repeats ', neighbourhood size # .
Output: New set of solutions (=4F .
(
=4F  {};

Constrain all objectives to be better than the nadir point;
for A = 0 to ' do

for B in ( do
B
2DAA4=C  B;

for 8 = 0 to � do
Randomly select objective I to optimise ; // Selecting objective
Randomly select #% of students to fix; // Selecting neighborhood
Fix selected students according to B2DAA4=C ;
Optimise I to find B=4F ;
(
=4F  (

=4F [ {B=4F};
B
2DAA4=C  B

=4F ;
end

end
end
return (=4F ;

Table 1: All lexicographic orderings of objectives and their corresponding objective
values. Some orderings attained the same objective values.

Ordering(s) I1 I2 I3

(I1,I2,I3), (I1,I3,I2) 1,599 102 53
(I2,I1,I3) 1,506 0 26
(I2,I3,I1), (I3,I2,I1) 1,486 0 0
(I3,I2,I1) 1,554 68 0

to be a dominated solution. Figure 2 shows that the alternative solutions stay close to the
starting solutions and that some starting solutions produced more alternative solutions
than others. Only certain sections of the efficient frontier have been approximated but
this may be improved using more sophisticated objective and neighbourhood selection
procedures.

5 Future work

There are several possible research directions to take this work in:

– Develop better objective and neighbourhood selection procedures so that more of
the frontier can be approximated.

– Compare the generated frontiers with frontiers found using an exact method to
assess the quality of the method’s output.

– Validate the quality of this method by using a large test set with a wide range of
instances.
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Fig. 2: Plot of non-dominated solutions and their corresponding objective values.

– Experiment with real-life instances rather than using instances that have been re-
duced in size.

– Apply the method to a variant of the UCTTP with more than three objectives.
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Abstract. Most timetabling problems have a given objective function to measure
the quality of a solution. However, users may have a “I know it when I see it”
recognition of a quality schedule, without specifying the complete basis for their
judgment. In this situation, the objective function cannot be exclusively used as a
solution quality measurement. This work presents an AI based approach to aid in
categorizing the solution’s quality when the users have not explicitly defined all
factors used in their criteria.
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1 Introduction
This work examines when the user community is not able to precisely articulate their
preferences, factors and criteria for evaluating the quality of a timetable solution. This
may cause the true user’s quality measurement to vary from the objective function.
Without the complete knowledge of the user community’s criteria, the scheduler is at
a loss to improve the quality of the schedule. The user may employ a “I know it when
I see it” approach [6] - where the user, without articulating specific criteria, judges the
solution’s quality only after viewing.

This work focuses on a common timetabling problem - the Travelling Tournament
Problem (TTP) defined in [1], to illustrate this possible scenario. This problem has
been well studied and has a very precise and calculable objective function. We add new
criteria to the objective function, though this criterion will be unknown to the timetabling
algorithm. With use of AI, this work will still be able to recognize quality solutions
considering the unknown criteria. The solution of the TTP has been addressed by a wide
variety of integer programming, constraint programming, tiling and search techniques
[7][4][3][2]. Our focus is not on improving the optimization of the distance objective
function, but rather the incorporation of additional evaluation criteria. Others like Tuffaha
et al. [11] have introduced known and measurable criteria to the TTP problem, such as
season duration. This work looks to incorporate unknown and subjective criteria.

2 Challenge
Our scenario begins with the user community providing the teams and distances to
enable the creation of a schedule according to the hard constraints of the TTP problem.
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A scheduler uses software to create the schedule with a minimal total distance according
to its algorithm. However, upon showing the schedule to the user community, the
schedule receives a poor rating. The scheduler is not sure why, so additional schedules
are generated for user review. These additional schedules have slightly higher distance
values, but the perceived quality of solution by the user community varies, though no
specific criticisms and feedback are provided to the scheduler.

For an example in a real-world scenario, let us assume that the user community
would favor each team to have at least 3 “long road trips”. We define a long road as a
trip where the distance travelled is at least 80% of the longest trip taken by any team
within the league. The reasoning for this user preference could be as follows:

– For a professional league, all teams should have to bear the burden of a long road
trip (perhaps changing time zones) a few times to share the pain of the travel across
the league.

– For a youth sports league, the road trips might represent exciting opportunities for
hotel stays for the players. Each team should have a few fun weekends.

Hence a high-quality schedule is one that has relatively low total travel distance, but
also provides that most teams have at least 3 long road trips. Our scenario is assuming
the user community has never explicitly stated or even realizes this preference. This new
criterion is known for our analyses and simulation in our project but is not known or
used by algorithm evaluating or generating candidate schedules. Our approach consists
of 3 major steps:

1) Convert the solution of the TTP algorithm to an image – Rendering the Schedule
2) Train the AI model to recognize good and poor schedules.
3) Generation and classification of candidate schedules.

We have chosen to work on the NFL32 instance of the TTP. This instance has
sufficient teams to enable a schedule image to be rendered. The information is provided
in a github repository of TTP instances and solutions on the Robin X website [12].
The algorithm selected is the NFL32Sol_ModifiedCircle solution [9]. The next sections
describe each step.

3 Rendering the TTP Schedule as an Image

The output of a typical TTP solution is a file indicating the home team, away team
and the slot (or week) of their game. The RobinX web site provides for the formats of
TTP problems. This solution output must be converted to an image, where each pixel
carries information about the solution. Since the TTP is a distance-oriented problem, we
construct our grid will use colors to show the distance travelled each week. Our color
will be a shade of a grayscale. Each color RGB pixel color will be one value providing
example pixel colors of (1,1,1), (2,2,2), (50,50,50), (200,200,200), etc. The exception is
those pixels close white (over 200) are colored yellow (255,255,0) to enable distinction
with the white background. Pixel values are calculated based on the distance to the next
game. The dark blocks indicate light or no travel for the team, while the brighter shades



Quality Schedules Considering Subjective or Unspecified Criteria 245

Fig. 1: A schedule image of the base solution for the project.

of gray and yellow (bright white in grayscale) indicate longer trips to the game location.
The row order rendering of the TTP (each row is a particular team) is based upon the
number of long trips within a season for the team. A sample TTP screen image output
based on this coloration is shown in Fig. 1.

4 Training the AI Image Classification Model

We use the public and free image classification training platform provided by Google’s
Teachable [10]. The platform allows the AI user to create image via a web cam and mark
their classification. We use a webcam to project the rendering of two sets of schedules
– each referring to a good schedule or a poor schedule.

Our schedule generation process starts the NFL32Sol_ModifiedCirclec solution
provided in the RobinX web site. This solution is based on relaxation algorithms and
well-known techniques for creating tournament matchup combinations. [13][5]. It is
a high-quality solution according to the TTP objective function. We then performed
several perturbations on this solution. A perturbation was done by switching of the
physical home locations of two teams. For example, switching between New York and
Boston would require a team to travel its distance to Boston, though the schedule states
the away team is New York. We utilized the pathway2code.com platform [8] for the
calculation of the new schedules and the rendering of the schedule image. The project
produced a series of 100 schedules for classification training purposes. An example
input to the training model is shown in Fig. 2.

5 Image Classification and Results

After training, the project generated 2 sets of 25 schedule images for classification. The
first set had only 2 perturbations each from the best schedule in RobinX, while the
second set had 30 perturbations. Schedules from both sets were given to the AI tool for
classification. The AI tool returned the probability that the schedule was a good or poor
schedule.
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Total Distance: 1178493
Distance Variance from Base: 0%
Category Classification: POOR
Actual embedded road trips:
Teams with < 3 Long Road Trips: 22
Teams with 3- 7 Long Road Trips: 7
Teams with > 8 Long Road Trips: 3
(not provided to training model)

Fig. 2: Base Solution Schedule Image and Long Road Trip Counts

The first set of 2 perturbations contained generated schedules that varied 10% from
the best schedule. Nearly all the schedules involved more than half the teams with
fewer than 3 road trips. The classifier was able to categorize these schedules as “poor”
with a greater than 90% probability. The second set of generated schedules with 30
perturbations were on average only 10-25% higher in distance, however the perturbation
led to more teams having longer road trips. The classification effort again was successful
over 90% in labelling these schedules as good. Some schedules had nearly identical
distances in the two groups, but a different distribution of long road trips and were
classified correctly. Also, artificial colorings of schedules with extremely high or low
coloring regions were classified successfully based on road trip distribution.

6 Summary

The work shows that a solution rendered as an image can used by a classifier to categorize
the quality of the schedule after a training phase. The AI model is unaware of the actual
criteria. This classifier will recognize patterns in the schedule based on pixel colorings,
enabling the classifier to categorize the quality of the solution without criteria knowledge
These criteria are not always available in practice, can be subjective, and vary among
users in the community. For users who only know a high-quality schedule when they
see it, we show quality schedules can still be generated.
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Abstract. This paper studies the multi-period vehicle routing problem with pre-
ferred pickup days in waste collection scenarios. The planning horizon includes
a number of consecutive periods, with customers having preferred pickup days in
each period. Deviation from these days is allowed, but comes at a penalty rep-
resenting customer dissatisfaction. Additionally, a maximum duration between
consecutive visits is imposed to manage waste accumulation.
We propose an adaptive large neighborhood search heuristic to solve this problem.
The method assigns service days to customers and optimizes vehicle routes for
each day of the planning horizon. The heuristic is validated on a real-world
dataset, and different penalty scenarios are compared for the deviations from
preferred days.

Keywords: Multi-period vehicle routing, Waste collection, Preferred days, Large
neighborhood search .

1 Introduction

Regular periodical visits to customers are important in the case of many problems arising
in real life, and waste collection is no exception. Accumulated waste has to be collected
from customers and transported to drop-off points in given periods, preferably on days
when it is the most suitable for the customers. However, deviating from these preferences
can come with cost benefits in exchange for customer dissatisfaction. While constructing
optimal routes for vehicles servicing customers belongs to the class of vehicle routing
problems (VRP), the introduction of periodic decisions leads to a more general version
of this problem.

Periodic variations of the VRP exist in the literature, most of which fall into the
periodic vehicle routing (PVRP) problem class. PVRP is the generalization of the
classical VRP, where routes are constructed over a time horizon T, and customers have
a service frequency, pre-defining their possible visit patterns over the days of this period
[3]. The goal of the PVRP is to assign customers to a visit pattern and prepare optimal
vehicle routes for the days of the period based on these patterns. The PVRP with service
choice [7] introduces extra complexity to this decision by making determination of the
visit frequency part of the optimization as well. Multi-periodicity in vehicle routing is
introduced usually combined with inventory routing decisions, where customers have to
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be visited in multiple periods (which are the individual days) [2,8]. Dynamic variations
of the PVRP also exist, focusing on due dates of the deliveries and introducing penalties
for lateness or cancelled visits [1,10].

This paper deals with the problem of multi-period vehicle routing with preferred
pickup days that can arise in various real-world waste collection scenarios. The planning
horizon of the problem contains P consecutive periods, each period consisting of D days.
For every customer, a period pickup frequency is given to denote the periods in which
they have to be visited, as well as a preferred day on which they are expecting the
visit in a period. Visits to a customer are also allowed outside of their preferred days,
however, these come with a penalty of deviating from the original schedule. Moreover,
as the customers are accumulating waste over time, a maximum duration between two
consecutive visits to the same customer also has to be introduced. The optimization
questions in this case are twofold: first, a decision has to be made on choosing the visit
days for each customer, then optimal vehicle routes have to be constructed for each
day of the planning horizon. While the concept of preferred visiting days have been
examined in the past [6], the deciding on the visiting days of each customer in each
period over a longer time horizon with limits between two visits has not been studied to
our knowledge. This paper will present our progress in an adaptive large neighborhood
heuristic for the solution of the above problem. This method will consider both assigning
the days of visit for customers in each period, as well as optimizing vehicle routes on
each day based on the customers to be visited. The heuristic will be validated on inputs
based on both real-world data and adapted benchmark datasets from the literature, and
compared to the scenarios where no deviation is allowed from the preferred days of
customers.

2 Problem definition

The problem introduced in Section 1 can be formalized as follows. Let us consider a
planning horizon ) , with length (in days) |) |, and period % with length |% |. ) can be
divided into |) |/|% | periods. A specific 8-th period of ) is denoted by %8 , with starting
day 1+ (8 � 1) |% | and ending day 8 |% |. The customers of the problem are given by set ⇠.
Each customer has to be serviced exactly once in each period. Every customer 28 2 ⇠
has a preferred collection day ?8 , where 1  ?8  |% |. Servicing a customer is allowed
outside of their preferred day: the maximum allowed deviation (in days) is defined by
�. Moreover, two consecutive visits to the same customer have to happen in at most
" days. While the set of visit patterns could be defined for each customers over the
entire planning horizon with the help of X and " , this would yield a large amount of
possibilities even for horizons with 3 or 4 periods.

If the service days are known for the customers, the route planning for each day can
be defined as a capacitated vehicle routing problem with deliveries (to waste disposal
sites) and route length constraints.



250 Cs. Kebelei and B. Dávid

3 Solution method

An adaptive large neighborhood search algorithm (ALNS) was developed for the solution
of the above problem. This algorithm closely follows the outline given by Ropke and
Pisinger in [9].

In order to create an initial solution, we considered every customer to be serviced on
their preferred day in each period. We solved the arising daily vehicle routing problems
with two different methods.

The MILP model of Buhrkal et al. [4] was modified to accommodate all constraints
of our problem. While this provides optimal vehicle routes with regards to the preferred
days of the customers, the occasionally long running times for larger days made it an
inefficient method to use in the ALNS. However, the results provided by this model were
utilized for the evaluation of the heuristic.

A greedy heuristic was also developed for quick initial solution construction. The
heuristic utilizes a ’best-fit’ approach. Customers are ordered in ascending distance
form the depot, and the current customer is scheduled to the vehicle with the least cost.
Vehicle capacities and route lengths are managed by sending the vehicles to a disposal
site if they reach a certain threshold of capacity/route length.

This initial solution was modified in each iteration using randomly selected destroy
and repair methods.

The objective of the algorithm is to minimize the combined travel duration of vehicles
and the deviation penalty from the preferred days. Each day of deviation by a customer
service from its preferred day uniformly contributes a X penalty to the costs.

4 Results

Input instances were generated based on real-world data from a waste collection com-
pany. Several instance sets of varying sizes were generated based on this data by randomly
selecting a given number of customers. Each input instance considered a 28-day plan-
ning horizon, with four 7-day periods in the horizon. Datasets with 50, 100, and 150
customers per period have been created, resulting in 200, 400, and 600 customer visits
over the horizon respectively. Ten different inputs were created in each instance set,

The original preferred days were used for each customer, and " (the maximum
number of days between two consecutive visits) was set to 8. No parameter tuning has
been performed yet on the ALNS: the original parameters from [9] have been used
instead. The number of iterations was set to 25 000, which was the only terminating
condition for the algorithm. Three scenarios were considered for the X penalties for
deviation: 0%, 5%, 10% or 15% of the average daily costs given by the optimal solution
of the MILP model when servicing every customer on their preferred days.

A summary on our preliminary results can be seen in Table 1.
The three rows of the table give the average results of the 10 inputs for each instance

set. The columns show the scenarios with different values of deviation penalty. The
results in the table give the ratio of the ALNS solution costs compared to the optimal
solution with preferred days. The expectation for the algorithm would be that if it can’t
find a better solution then the preferred day one, then it should find the optimum with
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Table 1: Aggregated test results for all instance sets.
Instance set X =0% X =5% X =10% X =15%
200 visits 0.72 0.86 0.97 1.03
400 visits 0.76 1.03 1.12 1.09
600 visits 0.74 1.13 1.23 1.14

preferred days (which would provide the 1.0 ratio). The starting costs of the greedy
initial solution were more than double that of the preferred day optimum.

It can be seen from the results that without any additional penalty for deviation, the
solutions found by the ALNS were about 75% of the costs of the preferred day optimum
for every instance set. The 200 visit instances also met the original expectation of finding
a solution close to the 1.0 ratio if the penalties turn out to be too high. However, with
an increase in the number of visits, this ratio became harder to reach for the ALNS.
Our preliminary tests showed that the number of iterations is too low for these instances
sizes, as the algorithm still found better results if left running. Moreover, we have not
experimented with setting the parameters of the ALNS, which might also improve the
quality of the results.

5 Conclusions and future work

This paper presented our preliminary results for solving a multi-period vehicle routing
with preferred days for waste collection. An ALNS algorithm was developed for the
problem, and initial test results were shown on real-world data. While the results are
promising, there is still room for improvement. The ALNS itself can be improved both
by finding the appropriate parameters for this problem class, and also by implementing
additional destroy and repair algorithms. The scope of testing will also be increased by
using benchmark datasets from the literature [5], but a method should be developed for
transforming the visit patterns of these input to preferred days.
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Abstract. We consider a strategic shift scheduling problem, consisting of assign-
ing health care workers in a hospital to shifts for handling a given number of tasks
spread out over a fixed time horizon. We formulate and present a branch-and-price
algorithm with a novel network flow formulation for the subproblem.
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1 Branch-and-price

Most shift scheduling and rostering problems in literature are solved using decomposi-
tion algorithms, Mixed Integer Programs (MIPs), e.g. Brunner et. al. [3] or heuristics,
e.g Van Huele and Vanhoucke [1], as presented by Van den Bergh et. al. [2]. We will
look into an extension of decomposition of a MIP model.

We will implement a branch-and-price algorithm with the master problem assigning
schedules to workers and the subproblem generating columns (shift schedules) to add
to the master problem. The master problem will minimize the total cost of the chosen
shift schedules and assign outside workers to handle understaffing. The novelty in
our approach lies in the specific formulation of the network flow model for schedule
generation. This is fairly well-known in literature, e.g. Akbarzadeh and Maenhout (2021)
[5] use such an approach for scheduling medical students and . Instead of formulating
the subproblem as a MIP, we will make use of a novel network formulation. We define
a network first introduced [4] By traversing the network from the starting period to
the end, a path, corresponding to a valid shift schedule, will be found. As such, the
subproblem can be solved, and a maximum reduced cost schedule can be found by
solving the shortest path problem for the graph. We will implement Dĳkstra’s algorithm
with a labelling and readout step to find the shortest path through the network.

As branching strategies we wish to test two separate approaches. The first is approach
is to branch on the most fractional masterproblem variable _ 9 = _⇤

9
, by setting upper and

lower bounds in the left and right branch respectively. This is easily included by fixing
the value in each iteration of the master problem. However the in the left branch to ensure
that the schedule is not regenerated, we solve a k-shortest path problem and compare the
generated schedules with all schedules in the current masterproblem. This is equivalent
to introducing schedule elimination constraints in an IP version of the subproblem [6].

The second strategy is to branch on the most fractional set of working periods, by
restricting the usage of all schedules using these working periods, a strategy used in
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[4]. This can be implemented by a restriction in the masterproblem and by restricting
this combination of working periods in the network, e.g. via removing weights and
generating a set of shortest paths. This way all the generated schedules will adhere to
the imposed restrictions. At each node of the branching tree, the lower bound is found
via solving the LP relaxation of the MP to optimality. The upper bound is found via a
simple rounding heuristic that fixes a single employee to a specific schedule and covers
the remaining demand via external staff. This is used as the computational cost is low.
A more precise upper bound is found by solving the MP as an IP problem, but due to
the higher computational cost, this is only done at certain intervals.

Any under coverage resulting from these schedules will be handled by adding exter-
nal staff in the MP.

We will look into the possibility of scheduling flexible and in-flexible workers to
achieve a greater flexibility in the generated schedules. The fraction of flexible workers
will be evaluated with varying proportions to ensure a feasible application of the method.
The extended branch-and-price method will be applied and tested on a number of test
instances generated from real-world data.
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1 Introduction

Modern-day manufacturing of artificial teeth relies on a highly automated production
process that utilizes complex machine environments. Therefore, a large number of
teeth products are manufactured daily to fulfill orders from customers all around the
world. Due to these large-scale requirements, efficient automated production scheduling
methods are required to minimize costs and consider all the constraints arising in the
complex machine environment.

Previously, we introduced the artificial teeth scheduling problem (ATSP) originating
from the industry in [4]. In addition to a formal specification of the problem, we provided
an exact constraint-modeling approach to solve the problem. Further, we proposed a
simulated annealing approach to tackle large-scale instances from the industry. An
experimental evaluation on real-life instances showed that the exact approach can find
optimal cost results for some small instances. However, the heuristic method was required
to provide solutions for large instances within a reasonable time.

In [5], we further proposed a set of low-level heuristic operators that can be uti-
lized with hyper-heuristic approaches. Experiments showed that hyper-heuristics could
efficiently solve realistic instances and can improve results over the previous heuristic
results in many cases. The existing heuristic approaches can produce high-quality solu-
tions for practical instances. However, optimal solutions are still unknown for all large
real-life instances.

This work proposes a novel hybrid approach for the ATSP that combines exact
constraint-modeling techniques with a heuristic approach. In particular, the proposed
technique decomposes the problem into two phases. In the first phase, optimized job
patterns are determined for a given instance using an exact approach based on constraint-
modeling. Afterwards, the optimized patterns are used to build an initial job sequence
as a starting point for the second phase, where a heuristic further optimizes the solution.

Solving machine scheduling problems in two phases has been successfully applied
in the past (e.g., [6,3]). However, existing decomposition methods cannot directly be
applied to solve the ATSP, as they assume that jobs are part of the input.



256 Felix Winter and Nysret Musliu

2 A 2-Phase Approach for Artificial Teeth Scheduling

The ATSP can be viewed as a complex single-machine scheduling problem originat-
ing from industrial teeth manufacturing. However, in contrast to traditional machine
scheduling problems, the jobs that need to be scheduled are not given as input to the
problem. Instead, problem instances specify demands for various teeth products, and
a part of the decision-making is to group demanded teeth products into jobs. Several
complex constraints impose restrictions on how products can be grouped. Thus, in prac-
tical instances, it is often required to overproduce certain products to fulfill job capacity
constraints.

The aim of the ATSP is to find schedules that minimize three objective criteria:
Makespan, Waste, and Tardiness. While the first two objectives are minimized by finding
efficient jobs that have a short duration and keep overproduction as low as possible, job
tardiness is mainly influenced by the sequence of the jobs. For the publicly available real-
life instances, all three objectives are weighted uniformly. A comprehensive problem
specification of the ATSP can be found in [4].

The existing exact- and heuristic approaches solve the problem in a single phase, i.e.,
the problem is modeled to simultaneously consider decisions on creating the jobs and
the scheduling aspect. In this work, we propose to decompose the problem in two phases.
In the first phase, the method aims to create a set of jobs for all given product demands to
minimize total job duration. Afterwards, the approach focuses on job scheduling in phase
2. Note that the 2-phase solution approach is incomplete, even if we reach optimal results
in both phases, as the first phase entirely neglects the tardiness objective. However, as
finding high-quality solutions for large-scale instances is challenging, the decomposition
approach can potentially find improved upper bounds compared to existing techniques.

Figure 1 illustrates solutions to phases 1 and 2. In Figure 1a we can see three jobs
(J1-J3), each including various different product configurations (Production molds M1-
M5, different colors, production lines L1-L4, and production programs P1-P2). Each
job in the example also uses a different number of production cycles which directly
determine the job’s length. The second phase schedules the jobs that were created in
phase 1. In the example in Figure 1b, the jobs have been scheduled one after the other,
although a different sequence would have been possible. All three jobs have precise start
and ending time points (C1 � C6), and the arrows between the jobs visualize the setup
time length between jobs.

3 Solution Method & Preliminary Experimental Results

For the first phase, we have implemented a constraint model using the high-level mod-
eling language MiniZinc [1], which can be used with constraint programming and
mixed integer programming solvers as an exact approach. For the first set of preliminary
experiments, we used the solver CP-SAT [2] in version 9.8.

To solve the second phase, we use a variant of the local search-based simulated
annealing approach from [4], that only activates the job swap neighborhood. Thus, the
heuristic focuses on optimizing the job sequence without modifying the jobs.

We conducted experiments with the proposed approach using the benchmark in-
stances from [5]. Instances 1-6 include small scenarios, whereas instances 7-20 consist
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M1 ⇥ 5, L1

M2 ⇥ 2, L1

M3 ⇥ 3, L2

J1: P1

M1 ⇥ 4, L1

M2 ⇥ 2, L1

M3 ⇥ 4, L2

J2: P1

M4 ⇥ 4, L3

M4 ⇥ 4, L3

M5 ⇥ 4, L4

J3: P2

1 cycle 3 cycles 4 cycles

(a) An example solution for the first phase consists of three
jobs with different durations (i.e., production cycles).

M1 ⇥ 5, L1

M2 ⇥ 2, L1

M3 ⇥ 3, L2

J1: P1

M1 ⇥ 4, L1

M2 ⇥ 2, L1

M3 ⇥ 4, L2

J2: P1

M4 ⇥ 4, L3

M4 ⇥ 4, L3

M5 ⇥ 4, L4

J3: P2

t1 t2 t3 t4 t5 t6

(b) An example solution of the second phase consists of
the three jobs created in phase 1 (See Figure 1a).

Fig. 1: Visual representation of example solutions for the 2-phase approach.

of large-scale real-life instances. The experimental environment was similar to the one
used in [5] using a time limit of 1 hour. Note that we dedicated the most time to the
exact solver and left the heuristic only the last 10 seconds of the time limit to find an
optimized job sequence. We chose these time restrictions, as finding efficient jobs in
phase 1 is particularly challenging. The exact technique could find optimal solutions
only for a few small instances in this phase.

Table 1 gives an overview of the cost results achieved by existing methods and the
proposed approach. Columns 2 (LB) & 3 (Exact) display the best lower bounds and
upper bounds of the cost results achieved with exact techniques for all instances in [4].
Column 4 (SA) shows the best upper bounds achieved with the simulated annealing
approach from [4], whereas Column 5 (HH) shows upper bounds achieved by the hyper-
heuristic approach from [5]. Finally, Column 6 (Hybrid) displays the results of the hybrid
approach proposed in this work (i.e., the final objective cost results after phase 2). Best
cost results are formatted in boldface. A - indicates no solution was achieved within the
time limit.

The results show that the proposed 2-phase hybrid approach cannot produce compet-
itive results compared to existing techniques on small instances. In these cases, existing
methods can likely reach solutions not explored by the decomposition approach. How-
ever, the novel approach produces improved results for most real-life instances, finding
new upper bounds in 12 cases. These results indicate that the proposed hybrid approach
can be a promising technique, especially for large-scale instances that lead to a vast
search space for existing methods.
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Instance LB Exact SA HH Hybrid

Instance 1 2.08 2.53 2.53 2.53 2.54
Instance 2 1.25 1.96 1.96 1.94 2.04
Instance 3 2.23 2.23 2.23 2.23 2.24
Instance 4 2.54 2.54 2.54 2.54 2.54
Instance 5 1.63 2.1 2.13 2.12 2.20
Instance 6 3 3 3 3 3
Instance 7 0.5 - 2.95 2.85 2.72
Instance 8 0.15 - 2.38 2.47 1.77
Instance 9 0.59 - 2.99 2.85 2.43
Instance 10 0.53 - 2.67 2.66 2.02
Instance 11 0.34 - 2.76 2.78 2.43
Instance 12 1.02 - 2.97 2.91 2.53
Instance 13 0.6 - 2.97 2.85 2.57
Instance 14 0.46 - 2.99 2.84 2.65
Instance 15 0.56 - 2.99 2.81 2.06
Instance 16 0.37 - 2.98 2.67 2.76
Instance 17 0.2 - 2.94 2.79 2.89
Instance 18 0.39 - 2.98 2.72 2.22
Instance 19 0.18 - 2.94 2.7 2.14
Instance 20 0.18 - 2.98 2.78 2.37

Table 1: Cost results achieved by existing methods and the proposed approach.
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The bus driver scheduling problem (BDSP, [11]) deals in its essence with assigning bus
tours’ legs to drivers. Such an assignment induces a shift for each driver, consisting of
categorized pieces of work like active driving time, manipulation time, passive ride time
to change between tours, breaks and shift splits (see Figure 1). Feasible assignments
must adhere to labor law and regulations imposed by collective agreements, such as
a maximum drive time and a sufficient number of breaks depending on the duration
and layout of a shift. For assignments to be implemented in practice, they must be
economically viable for the bus operator. At the same time, employees need to be happy
with their shifts to avoid absenteeism and unnecessary staff fluctuation.

In an ongoing project, we develop and study different features of a decision sup-
port system (DSS) prototype for automated BDS together with the personnel planning
consultancy company XIMES. The concrete problem variant at hand was introduced by
Kletzander et al. [4] featuring complex break constraints and seven different objectives
to capture the main qualities of an assignment: the paid time Cpaid (corresponding to the
actual costs), the wasteful time paid up to the minimum shift length of six hours if they
are shorter Cmpaid, the overall shift span including unpaid breaks Cshift, the number of
employees =emp, the number of shift splits =splits, where we have a long unpaid break,
the number of tour changes employees have to perform =

change, and the passive ride time
C
ride.

So far, this BDSP variant has been studied with domain experts and a well-defined
single weighted-sum objective with manually tuned weights in an expensive trial-and-
error phase. The current state-of-the-art approaches are based on Branch and Price by
Kletzander et al. [6] and a large neighbourhood search (LNS) by Mazzoli et al. [8].
Instead, we focus on finding assignments using a DSS without having to explicitly
state any prior preferences by weights but by setting goals for different objectives.
Furthermore, the DSS should help visualize a diverse set of solutions, facilitate learning
about dependencies between objectives, and suggest concrete hints on how to adjust
overly optimistic goals. To this end, we adopt and extend three different decision support
methods:

– Automated Weight Tuning (AWT): A recent automated approach introduced by Böð-
varsdóttir et al. [2] and extended by Kletzander et al. [5] which performs intertwined
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Fig. 1: Example solution to BDS instance with 23 employees and 17 tours. Active driving
times are tour-numbered blocks, brown/blue blocks are unpaid/paid breaks, red blocks
are passive ride time for a tour change, and long pink blocks are unpaid shift splits.

violation-dependent weight updates and optimization runs until an acceptable solu-
tion is found or too-conflicting goals are identified and reported back to the decision
maker (DM). Acceptability is defined by a feasible solution that meets current
thresholds on objectives, which are updated interactively until the DM is satisfied.

– Reference eXplainable Interactive Multiobjective Optimization (R-XIMO): A refer-
ence point based method by Misitano et al. [10]. First, the Pareto front is approx-
imated to quickly retrieve solutions by a scalarization function, taking a reference
point as input. SHAP values [7] are then used to quantify the contribution of differ-
ent input dimensions to the output and are converted into a hint on how to update
the reference point to improve a selected objective.

– R-XIMO with Shapley regression values: Mischek and Musliu [9] extend the R-
XIMO approach by directly using Shapley regression values instead of SHAP values
using a black box predictor which permits missing inputs. Their experiments use
weights as a preference structure to retrieve a solution from the Pareto front. Then,
Shapley values identify a rival of a desired target that the DM wishes to improve.
This leads to improvements more frequently for a test laboratory scheduling problem
than updating only the target’s weight.

First results. AWT consists of an exploratory phase taking time Cexp of intertwined
shorter optimization runs, in our case using simulated annealing (SA) and weight updates
depending on the current violations, either hard or soft. A final longer SA run of
duration C is performed using the weights of the best-found solution during exploration.
Table 1 shows the result of eight AWT runs over 50 BDS instances from [4]. BDS-1
is the problem variant without thresholds on the objectives starting from hard and soft
constraint weights all-equal-1 1 and : = 3 exploration threads. The acceptance rate, how
often an acceptable solution was found, is denoted by Aacp.

The values of the objectives are normalized instance-wise using gross leg times !
(including bus idle times), either by the total sum or in units of 8 h blocks. In BDS-1, we
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Table 1: Interactive AWT for BDS instance-average results with acceptance rate Aacp

using : threads and uniform (1) or learned (-⌘,B) initial weights w0 within =it iterations
and (exploration) runtimes (Cexp) C in minutes. Further solution metrics minimum paid,
work time, span, number of employees, shift split frequency, tour changes, and ride time.

?83 C⌘A4B⌘>;3B : w0 A
acp [%] =it

C
exp [0] C [0] Cmpaid

L C
work
L C

paid
L C

shift
L =

emp
L8h

)
splits
L8h

=
change
L8h

C
ride
L8h

BDS-1 3 1 100 3.1 3.4 13.5 0.44 0.97 1.41 1.02 1.68 940.3 0.29 0.56
BDS-2 C

⌘
emp 3 1 98 8.4 9.2 19.2 0.16 0.96 1.13 1.13 1.34 10.4 2.69 12.07

BDS-3 +C
B

change 3 1 86 9.2 10.0 20.0 0.23 0.98 1.20 1.11 1.38 18.2 1.03 11.07
-
⌘

100 3.8 4.2 14.2 0.21 0.96 1.17 1.08 1.38 35.9 0.90 7.13
BDS-4 +C

B
mpaid 3 -

⌘
84 9.5 10.2 20.3 0.02 1.11 1.13 1.47 1.27 2.9 1.32 52.77

BDS-5 +CBspan , C
B

splits 1 -
⌘

90 7.3 7.3 17.4 0.17 0.96 1.13 1.09 1.32 23.3 1.05 9.88
3 -

⌘
98 4.4 4.7 14.8 0.17 0.97 1.14 1.09 1.33 27.9 0.99 10.85

-
⌘,B

98 2.4 2.6 12.7 0.16 0.97 1.13 1.09 1.33 30.2 1.05 10.76

see that 1.68 employees are used on average to serve a gross 8 h block, with 0.29 tour
changes per 8 h block and very rare shifts splits (every ) splits = 940th block on average).
There are way too many employees with too short shifts. Therefore, for BDS-2, the
DM sets a threshold of 1.35 on the number of employees per 8 ⌘ block. This leads to a
desired massive reduction in costs per gross leg time (from 1.41 down to 1.13) at the
inconvenience of quite frequent shift splits (every 10th block) and tour changes (2.7
per block). Hence, the DM introduces another threshold in BDS-3 to reduce the tour
changes, which mildly increases costs and number of employees. Acceptable solutions
are found slightly less frequently, in 86% of cases. This process is continued by adding
two more thresholds until the DM is satisfied. The initial hard and soft weights are either
all-equal-1 or taking (hard or hard/soft) centroid weights - derived from AWT runs on
separate training data set to speed up the search of newly occurring online instances.
The impact of using parallel weight updates (: = 1 vs : = 3) and such learned centroid
weights is best seen for BDS-5, where the mean number of iterations goes down from
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Fig. 2: Parallel coordinate plot of non-dominated solutions for a BDS instance.
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7.3 to 2.4, also increasing the acceptance rate to almost 100%, to achieve the goals set
by the DM.

The other DSS features require an initial approximation of the Pareto front for a
given instance. A parallel coordinates plot [1] of non-dominated solutions created by
a first mutation-only evolutionary algorithm with NSGA-II selection rule shows first
promising results in Figure 2. The tradeoff between paid time/number of employees
and the shift ergonomy aspects are visible. Current work deals with a comparison with
Pareto Simulated Annealing (PSA) [3] and the implementation of other DSS approaches
[10,9] with Shapley value based guidance to update preference structures like reference
points and weights.

Acknowledgments The financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association is gratefully acknowledged.

References
1. Bagajewicz, M., Cabrera, E.: Pareto optimal solutions visualization techniques for multiob-

jective design and upgrade of instrumentation networks. Industrial & engineering chemistry
research 42(21), 5195–5203 (2003)

2. Böðvarsdóttir, E.B., Smet, P., Berghe, G.V.: Behind-the-scenes weight tuning for applied
nurse rostering. Operations Research for Health Care 26, 100265 (2020)

3. Czyzżak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for
multiple-objective combinatorial optimization. Journal of multi-criteria decision analysis
7(1), 34–47 (1998)

4. Kletzander, L., Musliu, N.: Solving large real-life bus driver scheduling problems with com-
plex break constraints. In: Proceedings of the International Conference on Automated Plan-
ning and Scheduling. vol. 30, pp. 421–429 (2020)

5. Kletzander, L., Musliu, N.: Dynamic weight setting for personnel scheduling with many ob-
jectives. Proceedings of the International Conference on Automated Planning and Scheduling
33(1), 509–517 (2023)

6. Kletzander, L., Musliu, N., Hentenryck, P.V.: Branch and price for bus driver scheduling
with complex break constraints. In: Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Virtual Event, February 2-9, 2021. pp. 11853–11861. AAAI Press (2021)

7. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Advances
in neural information processing systems 30 (2017)

8. Mazzoli, T.M., Kletzander, L., Van Hentenryck, P., Musliu, N.: Investigating large neigh-
bourhood search for bus driver scheduling. In: Proceedings of the Internat. Conference on
Automated Planning and Scheduling. vol. 34, pp. 360–368 (2024)

9. Mischek, F., Musliu, N.: Preference explanation and decision support for multi-objective
real-world test laboratory scheduling. In: Proceedings of the International Conference on
Automated Planning and Scheduling. vol. 34, pp. 378–386 (2024)

10. Misitano, G., Afsar, B., Lárraga, G., Miettinen, K.: Towards explainable interactive multi-
objective optimization: R-XIMO. Autonomous Agents and Multi-Agent Systems 36(2), 43
(2022)

11. Wren, A., Rousseau, J.M.: Bus driver scheduling—an overview. In: Computer-Aided Transit
Scheduling: Proceedings of the Sixth International Workshop on Computer-Aided Scheduling
of Public Transport. pp. 173–187. Springer (1995)



Ambulance routing for inter-hospital patient transfers in
Sri Lanka

Sudheeraka Wickramarachchi, Kazuki Hasegawa, and Wei Wu

Graduate School of Integrated Science and Technology, Shizuoka University, Japan
sudheeraka.22@shizuoka.ac.jp

Keywords: Inter-hospital ambulance routing problem, Minimum risk time, Machine
learning, Vehicle routing problem with time windows.

1 Introduction

The ambulance routing problem (ARP) involves finding optimal routes for ambulances to
reach emergency sites, taking into account variables like traffic congestion, geographical
limitations, and urgency of patient needs [2]. Essentially, the effectiveness of emergency
medical transport system (EMTS) relies on the efficiency in defining and solving the
ARP. Most existing studies investigated the scenario of reaching an emergency site and
transporting a patient to an appropriate hospital. However, to the best of our knowledge,
there are no studies that focus on designing and analyzing inter-hospital ARPs. In this
study, we define an unconventional ARP in the optimization of inter-hospital transport,
taking into account the particularities of the EMTS in Sri Lanka. This ARP incorporates
a range of characteristics such as assignment, scheduling, and routing. To obtain good
solutions for this new ARP, we propose a mathematical programming model and three
two-phase heuristic approaches. Two of the heuristic approaches use machine learning
techniques in the first phase.

2 Inter-hospital ambulance routing problem in Sri Lanka

The public health service of Sri Lanka is one of the major services provided free of
charge to the public. Based on to the facilities that can be provided, the hospitals in Sri
Lanka are categorized into 6 levels: National Hospitals (Level 1), Teaching Hospitals
(Level 2), Provincial General Hospitals (Level 3), Base Hospitals (Level 4), Divisional
Hospitals (Level 5), and Primary Medical Care Units (Level 6). In ascending order of
levels (Level 1 to 6), space facilities, personnel with expertise availability, intensive
care and surgery facilities are limited. According to the recommendations of medical
experts, some patients should be transferred to other hospitals that are better facilitated,
depending on the current hospital and their conditions.

In this study, we consider Colombo district, which has the highest population density
of Sri Lanka. Transferring a patient may be an ‘immediately incurred transfer’ (IIT) or
a ‘scheduled transfer’ (ST). An IIT can be clarified as a random occurrence such as an
accident patient. In each type of transferring scenario, medical experts recommend not
to exceed the minimum risk time (MRT). In this case study, we focus on the ST case,
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and identify the MRT as a highly significant factor, which can be expressed in terms of
a due time for each patient. We follow the ST case to conduct our analysis, and try to
obtain a good mathematical solution for the routing system.

3 Problem formulation

In this section, we first describe the ARP arising in Sri Lanka, and then propose a mixed
integer programming (MIP) model which can well address the objective of minimizing
the maximum tardiness that can occur in a patient transfer system.

In our ARP, we are given a set of patients +s = {1, 2, . . . ,<}, a set of available beds
+d = {< + 1,< + 2, . . . ,< + =}, and a set of ambulances  = {1, 2, . . . , :max}. The
ambulance depot is denoted by 0. Each bed (demand) is associated with its level ; 9 (i.e.,
the bed is in a level-; 9 hospital). Each patient (supply) 8 is required to be transferred
to a bed (in a hospital) with a level of ;8 or less, before the MRT 38 of patient 8. A
penalty weight F8 occurs, if the transfer request of patient 8 is ignored (not scheduled).
The maximum limit of patient ignorance for the system is denoted by, . The value 28 9
indicates the traveling time when transferring patient 8 to bed 9 . In this study, we consider
all ambulances are homogeneous in traveling time. The inter-hospital ambulance routing
problem (IH-ARP) aims to generate an ambulance routing solution so as to minimize
the maximum tardiness among transferred patients.

From the problem input, we consider to generate a directed graph ⌧ = (+ , ⇢) with
+ = {0} [ +s [ +d and ⇢ = ⇢sd [ ⇢ds [ {(0, 9) | 9 2 +s} [ {(8, 0) | 8 2 +d} [ {(0, 0)},
where ⇢sd = {(8, 9) | 8 2 +s, 9 2 +d, ; 9  ;8} and ⇢ds = {(8, 9) | 8 2 +d, 9 2 +s}. We
use 2sum to denote the value 2sum =

Õ
(8, 9 )2⇢ 28 9 . Next, we introduce the variables used

in the proposed model. The variable G8 9: indicates whether the edge (8, 9) is visited by
the ambulance : . We use ?8 to denote the departure time of patient 8, and ? 9 to denote
the arrival time at bed 9 , and )max to denote the maximum tardiness. By using these
variables, the IH-ARP can be modeled as,

min )max (1)

s.t.
’
82+

G 98: =
’
82+

G8 9: 8 9 2 + ,8: 2  (2)
’
:2 

’
92+d

G8 9:  1 88 2 +s (3)

’
:2 

’
82+s

G8 9:  1 8 9 2 +d (4)

’
82+d[{0}

G08: = 1 8: 2  (5)

?0 = 0 (6)
’
82+s

F8

 
1 �

’
:2 

’
92+d

G8 9:

!
 , (7)

? 9 � ?8 + 28 9 � (1 � G8 9:)2sum 8(8, 9) 2 ⇢ds [ ⇢sd,8: 2  (8)
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)max �
’
92⇡

’
:2 

28 9G8 9: � 38 � 2sum

 
1 �

’
:2 

’
92+d

G8 9:

!
88 2 +s (9)

?8 � 0 88 2 + (10)
)max � 0 (11)
G8 9: 2 {0, 1} 8(8, 9) 2 ⇢ ,8: 2  . (12)

Constraints (2) confirm the flow conservation. Constraints (3) ensure that each patient
can be transferred to at most one bed. Constraints (4) show similar relations for each
bed. Constraint (5) states that each ambulance departs from the depot. The starting time
is defined by constraints (6). The maximum limit of patient ignorance is denoted by the
constraints (7). Constraints (8) to (9) define linkage between arrival time of each visited
node and status of the MRT value.

4 Heuristic approaches

We design three heuristic approaches, all of which consist of two phases.

Approach based on local search ("LS): In the first phase, we assign patients to
convenient beds depending on an assignment cost 20

8 9
= 28 9 + U38 that combines the

traveling time 28 9 and MRT 38 of each patient 8, where U is an algorithm parameter
determined by trial and error. In the resulting assignment problem, we may ignore some
patients because of the limited number of beds. This supply-demand unbalance can be
resolved by introducing dummy nodes.

We consider the output (patient-bed assignment) of the first phase as task nodes
to construct a graph for the second phase. Each task node E8 9 represents a transfer of
patient 8 to bed 9 . We consider a directed complete graph consisting of all task nodes
and a special node E00 representing the depot. The problem in the second phase can be
identified as a vehicle routing problem with time windows (VRP-TW) depending on the
MRTs of patients.

For solving this VRP-TW, we first construct an initial solution by utilizing a nearest
neighbor method with time window restrictions. Thereafter, to obtain an improved
solution, we propose a local search (LS) algorithm using generalized OR-opt operations
extended from the classical OR-opt operations [1].

Approach based on ML incorporated with MIP (ML-MIP): In the second approach,
we use ML methods for patient selection. After the first phase, we can determine which
patients must to be transferred (without being ignored) in the system. Then, the route
construction is performed using a simplified version of the MIP with a reduced feasible
region of the original model (1)–(11).

Approach combining machine learning and local search (ML-LS): This approach
improve the first phase of the ULS approach. In the first phase, we utilize ML to
obtain multi-class (OneVsRest) predictions, that is, probability V8⌘ of assigning patient



266 Sudheeraka et al.

8 to hospital ⌘ (including a dummy hospital to denote the ignorance). Then, we set
2
00
8 9
= 1 � V8⌘ if bed 9 is in hospital ⌘, and use this modified cost 200

8 9
for the assignment

problem in the first phase.

5 Computational results

We performed computational experiments on 5 instances from real-world data for the
proposed model (MIP) in Section 3, and three approaches (ULS, ML-MIP, ML-LS)
in Section 4. When machine learning is involved, we employed logistic regression
(LR), gradient boosting (GB), random forest (RF), artificial neural network (ANN).
Preliminary experiments showed that GB and LR outperformed the others in ML-MIP
and ML-LS approaches, respectively. Thus, we report the results with their best machine
learning models. The time limit for each instance was set to 300 seconds. The parameter
U used in ULS is set to U = 5.

Table 1 shows the running times in seconds (time) and objective function values (obj),
where notation ‘—’ indicates that no feasible solution was obtained in the time limit.
From Table 1, we observe that MIP and ML-MIP showed similar performance in terms
of both running time and objective function value. The ULS and ML-LS approaches
obtained good solutions for large-scale instances within a small time compared to MIP
and ML-MIP. Compared to ML-LS, for some small-scale instances, ULS failed to obtain
an optimal solution within the time limit due to the poor assignment obtained in the first
phase.

Table 1: Comparison of four approaches.
instance MIP ML-MIP ULS ML-LS

< = :max time obj time obj time obj time obj
25 17 4 26.1 0 25.4 0 0.3 2 0.7 0
25 22 5 300.0 33 300.0 43 0.4 0 0.5 0
45 42 9 37.6 0 13.1 0 0.9 9 0.8 0
80 77 16 — — — — 2.0 0 1.9 5
96 94 22 — — — — 2.7 0 2.8 0
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1 Introduction

Air traffic volumes have increased for decades, and though there was a significant drop
because of the Covid-19 pandemic, IATA [4] projects that the demand for air travel
will double by 2040, with an average annual growth rate of 4.3%. These high air traffic
volumes result in an elevated environmental impact and significantly increased com-
plexity for air traffic controllers (ATCOs). Both play a particular large role in Terminal
Maneuvering Areas (TMAs)—the airspace around one or several aerodromes—where
all air traffic merges and which is, hence, particularly impacted by both congestion and
noise. To be able to handle the ever increasing volumes, it is crucial to alleviate the envi-
ronmental impact and the ATCO workload by providing improved arrival and departure
procedures, which still enable a high runway throughput.

An approach to lower the environmental impact are so-called continuous descent
operations (CDOs), optimal engine-idle descents, which can reduce fuel burn, gaseous
emissions, noise and fuel costs [3]. CDOs are optimal for the specific aircraft capabilities.
Thus, different aircraft have different optimal trajectories. These do not fit together with
the strategical standard terminal arrival routes (STARs) and they do decrease vertical and
temporal predictability—a situation to which ATCOs answer with increasing separation
buffers, which negatively effects throughput, or with issueing instructions that alter the
optimal trajectories, which negatively impacts the environmental benefits. To be able to
apply CDOs, tools that supply automated separation to ATCOs are needed.

For example, Choi et al. [2] presented a genetic-algorithm approach to compute air-
craft arrival routes and the arrival sequence: they first developed distinct route topologies
and then evaluated those with the heuristic-based scheduler.

In a series of papers, a group of authors [1,8,6,5,7] presented a MIP model to
design optimal aircraft arrival routes with fully automated scheduling of CDOs with
guaranteed aircraft separation and an operational concept that allows the usage of these
routes. All aircraft fly according to their optimal neutral CDO speed profiles, where an
aircraft’s arrival to the TMA entry point can be adapted within a time window. In the
model, the correct speed profile is picked by the length of the arrival route from entry
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point to runway. Moreover, the progress of aircraft along routes within the given grid
graph are tracked. While this framework showed the feasiblity of the approach, it suffers
from long runtimes: generating the arrival trees for a one-hour scenario took between
1.58h for low-traffic cases to 40.9h for high-traffic cases (with light aircraft added to the
flow). This is of course not feasible for the real-world application, where new arrival
routes should be computed regularly (ca. every 30 minutes, within the time frame that
an aircraft spends in the TMA), and the framework certainly could not handle adding
on more features, in particular, the influence of wind (the speed profile does not only
depend on the length of the descent, but also on the wind direction in relation to the
aircraft’s trajectory). Hence, in this paper, we provide a Dantzig-Wolfe refomulation of
a simplified model of MIP model in [7] (with fixed entry times and one separation time
independent of wake categories) and show that this can yield significantly decreased
runtimes—a promising approach for the full model and to handle even more practical
aspects like wind in the future.

For the given location of TMA entry points and the runway for an airport, and a
set of aircraft planned with fixed arrival time to their entry point, we aim to compute
dynamic arrival trees for which

1. No more than two routes merge at a point (merge points require ATCO attention,
we aim for the lowest possible complexity).

2. Merge points are separated by a minimum distance (otherwise many merge points
could be located within an arbitrarily small area).

3. Routes do not make sharp turns (infeasible by aircraft dynamics).
4. Obstacles, like no-fly zones, are avoided.
5. All aircraft are temporally separated along the arrival route.
6. All aircraft follow CDO speed profiles (dependent on the arrival-route length).

2 Model

We discretize the TMA by creating a square grid with an edge length equal to the lower
bound on separation and snapping the locations of both entry points and the runway to
the grid. This leads to a bi-directed graph ⌧ = (+ , ⇢) with nodes # and edges ⇢ where
each grid node is connected to its 8 neighbors and for any two neighboring nodes 8 and
9 , both edges (8, 9) and ( 9 , 8) exist in ⇢ . Let ;8 9 denote the length of edge (8, 9) 2 ⇢ , P
the set of entry points, A the runway, A1 the set of all aircraft arriving at entry point
1 2 P, A =

–
12P A1 the set of all aircraft, and |A1 | the number of aircraft entering

entry point 1. In addition, C̄0 denotes the planned arrival time of aircraft 0 to its entry
point and ) = {0, . . . ,)} is the considered time interval.

As part of making a Dantzig-Wolfe refomulation, all possible paths from each entry
point to the runway are generated beforehand. This is done with an upper bound on
the length of feasible paths and with respect to forbidden sharp turns and obstacles
avoidance,. Let ⇧1 denote the set of paths from entry point 1 to the runway and
⇧ =

–
12P ⇧1 be the set of all paths. For any c 2 ⇧, we define \c as the set of edges

that path c passes through.
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We introduce binary variables dc for each path c 2 ⇧, indicating whether path c
is used in the arrival tree and G8 9 indicating whether the edge (8, 9) participates in the
arrival tree, our Dantzig-Wolfe-reformulation-based model is:

min V

’
(8, 9 )2⇢

;8 9G8 9 + (1 � V)
’
12P

’
c2⇧1

’
(8, 9 )2 \c

|A1 |;8 9 dc

’
9:( 9 ,8)2⇢

G 98  2 88 2 + \ {P [ A} (1)

’
9:(8, 9 )2⇢

G8 9  1 88 2 + \ {P [ A} (2)

’
c2⇧1

dc = 1 81 2 P (3)

’
12P

’
02A1

’
c2⌥08C

dc  1 88 2 + ,8C 2 {0, . . . ,) � f} (4)

’
c2⇧: (8, 9 )2 \c

dc  &G8 9 8(8, 9) 2 ⇢ (5)

dc  G8 9 8c 2 ⇧,8(8, 9) 2 \c (6)
G8,8+1+= + G8+1+=,8 + G8+=,8+1 + G8+1,8+=  1

88 2 + 0 \ {P [ A} : 8 + 1 + =, 8 + =, 8 + 1 8 {P [ A} (7)
G8,8+1+= + G8+=,8+1 + G8+1,8+=  1 88 2 P \+ 0 (8)
G8,8+1+= + G8+1+=,8 + G8+1,8+=  1 88 : 8 + 1 2 P (9)
G8,8+1+=, + G8+=+1,8 + G8+=,8+1  1 88 : 8 + = 2 P (10)
G8+1+=,8 + G8+=,8+1 + G8+1,8+=  1 88 : 8 + = + 1 2 P (11)

The objective function is a convex combination of the length of the paths and the tree
weight. Constraints (1) and (2) ensure that all the nodes except the entry points and the
runway have an indegree of maximum 2 and an outdegree of maximum 1. Constraint (3)
states that exactly one path from each entry point should be used. A minimum separation
of f time units between all aircraft at all nodes is given in Constraint (4) where ⌥08C
is the set of all paths (starting from the corresponding entry point and passing node 8)
on which aircraft 0 with entry time C̄0 occupies node 8 between time C and C + f � 1.
Constraint (5) and/or Constraint (6) connect the variables where & is a large number
(the number of entry points in our case). Because we do not solely aim for shortest
paths, we need to prohibit crossing. We could either take the crossings into account
when generating the routes or we can prohibit them by Constraints (7)-(11) where
+
0 = + \ {last grid row} \ {last grid column}.

3 Results and Conclusions

We used data for Stockholm-Arlanda-airport TMA with a 15 ⇥ 11 grid (which ensures
a separation of 6NM) and solved our model using the Gurobi optimization solver with
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gurobipy as interface to Python on a MacBook Pro, M1 2020. We have made preliminary
experiments where the running time of our reformulated model for a medium-traffic case
(20 aircraft in one hour) with fixed arrival time for all aircraft including the generation
of the paths was less than one minute.

Comparing our preliminary results to those given in [1,8,6], confirms that our model
significantly outperformed in terms of computational efficiency. This gives the possibil-
ity for improved runtimes even for the case with flexible entry times and separation based
on wake-turbulence categories ([5,7]). Moreover, this indicates that our framework may
be capable of handling real-world operations and generating new arrival routes regularly
on a personal computer.
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1 Introduction

In this extended abstract, we consider a sports tournament where all participants gather
at one location for a day and a limited number of fields is available. We focus on a
single round-robin tournament (i.e. all teams have to play each other exactly once),
where each team needs a resting time of at least one time slot between every two
games they play. This setting occurs regularly in practice; our work is particularly
inspired by an amateur badminton tournament called “PK WVBF” in West-Flanders,
Belgium. Sometimes having more resting time is perceived as desirable, yet in amateur
tournament environments teams prefer to play their games in quick succession so they
can return home without delay. Therefore, we generate timetables minimizing waiting
times, defined for each team as the total number of time slots they have to be present in
addition to their games and resting times. We focus on creating timetables that are both
efficient (by minimizing the total waiting time) and fair (by minimizing the maximum
waiting time).

Knust [2] considers a tournament which is similar except that it spans multiple
days and only one field is available. Moreover, the tournament is divided into different
blocks (or playing days) such that each team plays twice per block. Knust proposes an
exact polynomial-time algorithm that simultaneously optimizes the total and maximum
waiting times. We will generalize Knust’s algorithm into a heuristic to generate timeta-
bles for a single-day tournament with multiple fields. Note that the single-day constraint
complicates the timetabling efforts, since the blocks created by Knust’s algorithm cannot
simply be scheduled one after the other due to the required resting times.

For reviews on generating timetables for sports tournaments, we refer to the surveys
[1], [3], and [4].
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2 Problem formulation

In the IP model we consider the number of time slots and fields as a given. First, given a
set of teams ) , we assume the number of fields equals d( |) | � 1)/4e. Considering only
d( |) | � 1)/2e games can be played simultaneously and a team can only play one game
per two time slots, increasing the number of fields would mainly increase the number
of empty slots without offering much advantage in terms of our objectives. With this
number of fields, preliminary experiments show that timetables can be created of length
2|) |. Furthermore, we assume a day is always long enough to schedule all games. We
assign a time slot to each game, such that (i) the number of fields is always respected, (ii)
the required resting times are respected, and (iii) the total waiting time and the maximum
waiting time are minimized.

Parameters
) Set of teams
⌧ Set of games, constituting a single round-robin tournament
⌧C ⇢ ⌧ Set of games that team C 2 ) has to play
( Set of time slots, |( | = 2|) |
5 Number of fields, 5 = d( |) | � 1)/4e

Decision variables
G6B 1 if game 6 2 ⌧ is scheduled at time slot B 2 (, 0 otherwise.
FC waiting time of team C 2 )

The model is formulated as follows, using a lexicographic bi-objective function:

min
’
C2)

FC (1)

min
✓
max
C2)

FC

◆
(2)

subject to
’
B2(

G6B = 1 86 2 ⌧ (3)

’
62⌧

G6B  5 8B 2 ( (4)

’
62⌧C

G6B + G6 (B+1)  1 8C 2 ) , B = 1, ..., |( | � 1 (5)

’
B2(

�
(B + 1)G6B � BG60B

�
 FC + (2|) | � 1) 8C 2 ) ,86, 60 2 ⌧C (6)

G6B 2 {0, 1} 86 2 ⌧, B 2 ( (7)
FC � 0 8C 2 ) (8)

The first objective minimizes the total waiting time, whereas the second minimizes the
maximum waiting time across all teams. Constraints (3) and (4) ensure that every game
is played exactly once and that games are restricted to the number of available fields.
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Furthermore, Constraints (5) guarantee that the required resting times are respected.
Next, the waiting time of each team is defined by Constraints (6); the games and resting
times of each team require 2|) |�1 time slots. Finally, Constraints (7) and (8) are variable
domain constraints. Note that the integrality of FC follows from Constraints (6).

3 Preliminary computational results
In this section, we show how to generalize Knust’s algorithm [2] into a heuristic for a
single-day tournament with multiple fields. The strategy is to generate blocks such that
each team plays two games per block, and schedule them consecutively on a single day.
In order to do this, we assume |) | to be odd as this enables us to follow the structure of
the timetables generated by Knust. The blocks are constructed by generating the games
in the same order as the single-field variant and scheduling them at the earliest feasible
time slot, resulting in a total waiting time of 2 per block. Intuitively, this follows from
the fact that some games cannot be scheduled on their “ideal” time slot due to all fields
already being occupied. We ensure resting times are respected by scheduling an empty
slot between the blocks, after which games are moved forward individually. Details will
be discussed during the talk.

Since the number of fields equals d( |) | � 1)/4e and |) | games are played per block,
we need at least 4 slots per block; the heuristic creates blocks of length 5. Together with
the empty slots after each block and the fact that ( |) | � 1)/2 blocks have to be planned,
we have an upper bound on the number of time slots of 3( |) | � 1).

We compare the running time of the heuristic to the IP model, solved with Gurobi
version 10.0.03, in Table 1.

Table 1: Running times of the IP model and the heuristic for odd numbers of teams.
|T| IP model Heuristic
11 2m46s 0s
13 1m12s 12ms
15 8m38s 1ms
17 >30m 1ms
. . . . . . . . .
501 2.8s

Despite the IP model being too slow to create optimal schedules for a large number of
teams, we suspect that for each odd |) | a schedule exists such that:

’
C2)

FC = 2|) | � 4 (9)

max
C2)

FC = 2 (10)

This conjecture is confirmed for the cases where |) |  15. Assuming these results hold
for every odd |) |, we compare them against our heuristic in Figure 1.
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Fig. 1: Ratio of the results obtained by the heuristic to the conjectured optimal results,
for odd numbers of teams |) |.

This extended abstract represents an initial step towards the general problem of a
single-day round-robin tournament with any given number of available fields and any
number of teams participating. For instances where the number of teams is even, we
can easily add a dummy team. However, the impact of this on waiting times requires
investigation. Furthermore, we plan to examine how the structure of the schedules should
be adapted when fewer fields are available, while keeping the waiting times within limits.
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Abstract. At some educational institutions, students are divided into cohorts,
where they complete the same set of courses with everybody else in that cohort.
In this paper, we describe an Integer Linear Programming (ILP) solution to the
School Timetabling Problem (STP), for schools that are cohort-based. Our Master
Timetable is generated from the input data, a user-friendly Excel document that
lists all of the course/cohort/teacher/classroom constraints.

Our model, which is coded in Python and solved using the MPSolver from Google
OR-Tools, generated the 2023-2024 Master Timetable for three schools in Canada:
an elementary school, a middle school, and a post-secondary institute. All three
timetables satisfied 100% of the school’s hard constraints, and were computed in
less than 60 seconds.

Keywords: Integer Programming, Linear Programming, Timetabling

1 Introduction

Timetabling is defined as “the act of scheduling something to happen or do something
at a particular time” [2]. This simple definition conceals the challenge and complexity
of timetabling.

For educational institutions, the Master Timetable dictates to every single teacher
and student where they need to be at each hour of the school day. Given its importance,
some school administrators spend weeks or months constructing the annual Master
Timetable, often using post-it notes or wall magnets to assign a teacher, classroom, and
timeslot to each section of a course.

When timetables are constructed by hand, the process is inefficient and the product is
sub-optimal. This is why researchers have investigated the School Timetabling Problem
(STP) for sixty years [6], creating timetables for schools all over the world [11].

In the most basic version of the STP, the objective is to assign courses to teachers,
timeslots, and classrooms, subject to the following constraints: a teacher cannot teach two
courses in the same timeslot, no classroom can be used by two courses simultaneously,
and each teacher has a set of unavailable teaching timeslots. This basic version of the
STP is NP-complete [4].

Although scholars have conducted research on educational timetabling since the
1960s [1], it took until the mid-1990s to standardize educational timetabling problems,
along with their corresponding benchmark data sets [3].
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To advance the field of educational timetabling, a group of researchers have run the
International Timetabling Competition, with the 2011 edition focused on high school
timetabling [12] and the 2019 edition focused on university timetabling [10]. Both
competitions were modeled on real-world data sets.

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced to incor-
porate student course preferences into the STP [9]. The PECTP involves student-related
hard constraints, such as ensuring that no student is enrolled in multiple sections of
the same course, and the objective function is to maximize the number of occurrences
where students are enrolled in their desired courses.

The lead author has created 40 Master Timetables for various Canadian high schools
over the past five years, using his published algorithms to solve large real-life PECTP
instances for schools: using graph coloring [7] and large neighborhood search [8]. While
each Master Timetable was custom-built to meet the school’s specific requirements,
several of these timetabling projects were extremely similar in that the schools were
cohort-based, where students were divided into fixed groups and took the same set of
courses.

For cohort-based timetables, the PECTP reverts back to the STP, since student
preferences do not exist. Thus, the optimal timetable can be generated by solving an
Integer Linear Program (ILP) where the objective function considers teacher preferences
for the timeslots they would like to teach their courses.

We now present our solution to solving virtually any cohort-based STP. Our au-
tomated timetabling algorithm requires a single input file: an Excel document that
contains the teacher preferences as well as all of the constraints involving courses,
cohorts, teachers, and rooms. We will explain how we worked with school adminis-
trators at a Kindergarten to Grade 5 elementary school, a Grade 6 to Grade 8 middle
school, and a design academy for post-secondary students, to generate each institution’s
provably-optimal 2023-2024 Master Timetable.

Despite the different contexts of all three of these educational institutions, we used
the exact same Python program to create all three timetables; the only difference was
that each school had its own input Excel file. At the end of our Python program, we call
MPSolver, the Mathematical Programming solver from Google OR-Tools [5] that solves
Mixed Integer Programs (MIPs).

2 Mathematical Model

Each course 2 has one or more lessons (or meetings) in a week. Thus, we define our
main binary decision variable as -<,2,3,? , which equals 1 if and only if meeting < of
course 2 is scheduled on day 3 in period ?. Otherwise, -<,2,3,? = 0.

We can view each (3, ?) pair as a timeslot, and each (<, 2) pair as a single event
that is attended by one or more student cohorts, is taught by one or more teachers, and is
offered in one or more rooms. Our ILP will generate the Master Timetable by assigning
exactly one timeslot to each event.

Let ⇡ be the set of days, % be the set of periods, and ⇠ be the set of courses. For
each course 2, if there are ! (2) lessons (i.e., events) that must be scheduled during the
|⇡ |-day timetable, then we have the following constraint.
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’
32⇡

’
?2%

-<,2,3,? = 1 8 2 2 ⇠,< 2 [1, !(2)] (1)

Each course 2 2 ⇠ is unique, where the teacher(s) and room(s) for course 2 are
pre-assigned by the school.

For example, one of our school clients has 6A-Science, 6B-Science, 6C-Science in
its set of courses ⇠ since each of the three Grade 6 cohorts has its own Science course
that meets three times each week. Additionally, this school has all of its Grade 6 students
taking Physical Education at the same time. This single course, 6-PhysEd, is offered to
all three cohorts (6A, 6B, 6C), is co-taught by three teachers, and takes place in two
rooms (Gym1, Gym2).

By specifying the cohorts/teachers/rooms for each event, once our ILP solver deter-
mines all four-tuples (<, 2, 3, ?) for which -<,2,3,? = 1, we can rapidly generate the
various “cross-sections” of our Master Timetable to determine the timetable from the
perspective of each course, each cohort, each room, and each teacher.

For each cohort, each teacher, and each room, we can determine ⇢ , the set of events
(<, 2) involving that entity, and ensure that there are no scheduling conflicts. Thus, we
have our next set of hard constraints.

’
(<,2)2⇢ (⌘)

-<,2,3,?  1 8 3 2 ⇡, ? 2 %, ⌘ 2 Cohorts (2)

’
(<,2)2⇢ (C )

-<,2,3,?  1 8 3 2 ⇡, ? 2 %, C 2 Teachers (3)

’
(<,2)2⇢ (A )

-<,2,3,?  1 8 3 2 ⇡, ? 2 %, A 2 Rooms (4)

Finally, we define %'<,2,3,? to be the preference of having meeting < of course 2
scheduled on day 3 and period ?. This preference coefficient may be influenced by a
teacher’s desire to teach on certain days and periods, or pedagogical reasons of having
certain courses assigned to particular timeslots. Thus, the objective function of our ILP
is

’
<2"

’
22⇠

’
32⇡

’
?2%

%'<,2,3,?-<,2,3,? .

There are two major families of constraints in our model, and we now explain each
one in detail.

2.1 Family I: Restrictions on Sets of Events

Let ⇢ be a set of events and let ) be a set of timeslots. Then we can connect ⇢ and )
via the following linear constraint.
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’
(<,2)2⇢

’
(3,?)2)

-<,2,3,? {=, , �} = (5)

For each constraint, we choose the appropriate sign from {=, , �}, and set = to be
a specific non-negative integer. Let us provide several examples on the versatility of this
family of constraints.

(i) “Teacher X is unavailable to teach on Tuesdays”: ⇢ is the set of events taught by
Teacher X, ) is the set of timeslots with 3 = 2, our sign is =, and = = 0.

(ii) “The majority of the three 6A-French lessons must occur before lunch”: ⇢ is the set
of 6A-French events, ) is the set of timeslots that occur before lunch, our sign is �,
and = = 2.

(iii) “There is at most one Grade 8 Art class scheduled in Period 4”: ⇢ is the set of events
whose course is Grade 8 Art, ) is the set of timeslots with ? = 4, our sign is , and
= = 1.

(iv) “Ensure that Grade 7s do not have Physical Education more than once on any day”:
⇢ is the set of events whose course is Grade 7 Physical Education, ) is the set of
timeslots with 3 = : , our sign is , and = = 1. We repeat this constraint for each
: 2 [1, |⇡ |].

(v) “Ensure that Grade 7s do not have Physical Education on three consecutive days”:
⇢ is the set of events whose course is Grade 7 Physical Education, ) is the set of
timeslots with 3 2 [: , :+1, :+2], our sign is , and = = 2. We repeat this constraint
for each : 2 [1, |⇡ | � 2].

This framework enables us to model constraints that relate almost any set of events
to any set of timeslots, including the five examples provided above. We can place
constraints on teacher and room availability, guarantee that certain events are scheduled
(or not scheduled) in certain timeslots, spread out the multi-lesson courses taken by
each cohort, and ensure that each teacher has a reasonable schedule each day without
too many consecutive lessons or large gaps of non-teaching periods.

2.2 Family II: Relationships between Sets of Events

Let ⇢8 = (<8 , 28) for each 8 � 1, and let ⇢1, ⇢2, . . . , ⇢E be a set of E events. Using a
linear equation or linear inequality, we can model five additional timetabling constraints
that relate these E events.

(i) All E events must occur in the same timeslot.

-<8 ,28 ,3,? = -<8+1 ,28+1 ,3,? (6)
83 2 ⇡, ? 2 %, 8 2 [1, E � 1]

(ii) All E events must occur on the same day.
’
?2%

-<8 ,28 ,3,? =
’
?2%

-<8+1 ,28+1 ,3,? (7)
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83 2 ⇡, 8 2 [1, E � 1]

(iii) The E events must occur on E different days.
’

82 [1,E ]

’
?2%

-<8 ,28 ,3,?  1 83 2 ⇡ (8)

(iv) The E events must occur on E (different) consecutive days, with ⇢8 occurring
before ⇢ 9 for all 8 < 9 .

’
?2%

-<8 ,28 ,31 ,? +
’
?2%

-<8+1 ,28+1 ,32 ,?  1 (9)

88 2 [1, E � 1] and 31, 32 2 ⇡ with 32 � 31 < 1.

A similar set of inequalities also allows us to ensure that the E events must occur in
E consecutive periods of the same day, with ⇢8 occurring before ⇢ 9 for all 8 < 9 .

(v) There is a minimum gap of 6 days between events ⇢8 and ⇢8+1, for all 1  8  E�1.

’
?2%

-<8 ,28 ,31 ,? +
’
?2%

-<8+1 ,28+1 ,32 ,?  1 (10)

88 2 [1, E � 1], and 31, 32 2 ⇡ with |32 � 31 | < 6.
(11)

To get a maximum gap of 6 days, we simply replace < with > in the above inequality.

This versatile and flexible framework enables us to model constraints that relate al-
most any set of events to each other. For example, we can ensure that certain courses
are not scheduled on the same day, that two cohorts have their French courses at the
exact same time each week, and that a part-time teacher’s work times are limited to two
consecutive days in the timetable.

Real-life School Timetabling Problems (STPs) can be modeled effectively using the
two families of constraints provided in this section. In fact, for all three of our cohort-
based schools, we were able to model 100% of their constraints using these two families
of constraints, and generate each school’s Master Timetable in less than 60 seconds. We
now explain how we accomplished these results.

3 Solving Three Different STPs

Victoria is the capital city of the Canadian province of British Columbia, and is the
home of two leading independent co-educational K-12 preparatory schools named St.
Michaels University School (SMUS) and Glenlyon Norfolk School (GNS). Victoria
is also the location of Pacific Design Academy (PDA), an innovative post-secondary
institute that offers eight full-time diploma programs including Fashion Design, Interior
Design, and Graphic Media Design.
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We were hired to create the Master Timetable for the SMUS Junior School (Kinder-
garten to Grade 5), the GNS Middle School (Grade 6 to Grade 8), and the entire PDA
academic timetable with its eight different diploma programs.

We worked closely with the administrators at the three institutions to create an
Excel document that encoded all of the school’s constraints and requirements, as well
as teacher preferences, and would serve as the input file to our Python program. As
mentioned earlier, we used the same Python program for all three timetables, which
called Google’s MPsolver to solve our Integer Linear Program. Each school’s input
Excel file consists of the following five worksheets.

1. Timetable Structure
2. Timetable Content
3. Event Set Constraints
4. Event Relationship Constraints
5. Teacher Preferences

The Timetable Structure worksheet contains |% | rows and |⇡ | columns, indicating
the names of each day (1-Monday, 2-Tuesday, . . .) and each period (Period 1, Period 2,
. . .). Each of the |⇡ | |% | timeslots is labeled 3-?, for each day and period. For example,
2-4 is Tuesday Period 4.

Each of our three schools had a different number of timeslots, with SMUS having 5
days and 7 periods, GNS having 10 days and 5 periods, and PDA having 5 days and 3
periods.

The Timetable Content worksheet provides the complete set of events, containing
the ID of each unique course and the number of total meetings for that course. For each
course 2 2 ⇠, this worksheet also lists the name of the course, and all of the affected
cohorts, teachers, and classrooms. Figure 1 provides an excerpt of this worksheet for
PDA.

Fig. 1: Excel Worksheet Listing the Set of Events.

While most rows in this Excel worksheet have “Class” as their Course Type, we can
also include “Day Off” and “Prep Time” to denote events such as teachers needing a
day off, or one or more teachers requiring a common period to plan together. Since no
teacher can be scheduled for two events in the same timeslot, our automated timetabling
program guarantees off-days for certain teachers as well as ensuring that a set of teachers
can have overlapping non-teaching timeslots in which to prepare for future lessons.
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As a concrete illustration, SMUS required one part-time teacher (Teacher M) to have
exactly one non-teaching day (i.e., no teaching for all seven periods on any one of the
five days) in addition to at most three periods of teaching on each of the remaining four
days. The administrator at SMUS informed us that Teacher M’s non-teaching day could
be any day between Monday and Friday, but that a non-teaching day was required for
this teacher.

Fig. 2: Excel Worksheet of the Set of Event Constraints.

For each row of the worksheet provided in Figure 2, our Python program generates
⇢ , the set of events that are consistent with the leftmost six columns. In Figure 2, the
set ⇢ refers to the set of events taught by Teacher M that have Course Type = “Class”.
In other words, by labeling her off-day with a different Course Type, we do not violate
the constraint that she can be assigned at most three events (i.e., classes) on each day
between Monday and Friday.

We then created a 7-meeting course named NoTeacherM, with Course Type set to
“Day Off”. In the Event Relationships worksheet, we added a row to indicate that these
7 events (i.e., meeting 8 for Teacher M, for each 1  8  7) must occur in 7 consecutive
periods of the same day. This worksheet contains all the constraint options provided in
the Family II subsection of our model.

Finally, the Teacher Preferences worksheet indicates information on when teachers
would prefer to teach their classes during all the timeslots they are available. At PDA,
each preference coefficient %'<,2,3,? was marked as 2 points whenever the teacher of
course 2 wanted to teach on day 3 period ?, and was marked as 1 point whenever that
teacher could teach in that timeslot. (For GNS and SMUS, each %' coefficient was 1 as
teachers could not indicate preferences.)

This five-worksheet Excel file serves as the input to our Python program. We now
provide the key statistics for each of our schools, listing the number of cohorts, the total
number of events (<, 2) in the timetable, the number of rows in our Event Constraints
worksheet, the number of rows in our Event Relationships worksheet, and the average
total running time of our Python program on this input file over ten iterations. This
information is provided in Table 1.

All calculations were made on a stand-alone laptop, specifically a 8GB Lenovo
running Windows 10 with a 2.1 Ghz processor.

From the table above, we see that it took less than one minute to generate the
2023-2024 Master Timetables for these three educational institutions. All three institu-
tions accepted and implemented our timetable, and have hired us to build their Master
Timetable again in 2024-2025.
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School Name PDA GNS SMUS
Days in Timetable 5 10 5

Periods in Day 3 5 7
Total Timeslots 15 50 35

Cohorts at the School 8 9 12
Total Events Scheduled 91 348 402
Event Constraint Rows 22 74 134

Event Relationship Rows 16 20 38
Running Time (in seconds) 0.54 13.48 45.51

Table 1: Statistics for our Automated Timetabling Program.
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ferent requirements. Here we briefly explain a methodology to create schedules
of 10, 20, and 40 weeks for Danish high schools, including event chains.
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1 The Danish High School Timetabling Problem

The High School Timetabling Problem (HSTP) is a well-known problem, and even
though it is very dependent on the country of the high schools in question, general
versions have been formulated [1]. A common part of HSTP is however to have a cyclic
schedule, where a fixed timetable is used for the entire school year. Here we will briefly
describe the Danish High School Timetabling Problem (DHSTP). The model described
is now used by (practically) all Danish high schools and has some unique features. The
current model of DHSTP is used for cyclic repetition of the timetable, but here we
experiment with using metaheuristics for solving the DHSTP for not one week, but up
to 40 weeks.

The DHSTP model utilize both hard and soft constraints, which are shown below
in table 1. Metaheuristics and Mixed Integer Programming (MIP) have previously been
applied to the DHSTP ([2,3,4]), showing the viability of both methods in scheduling
over 1 and 2 weeks. Real-life instances are often too complex for scheduling 10 or more
weeks, whereby planning for two weeks and repeating the schedule over the longer
horizon is a viable solution. This however means that single instances of resources not
being available during the longer horizon cannot be considered, potentially leading to
sub-optimal solutions. If, however, creating schedules of 10 weeks or more were viable
in practice, more information about the school year can be taken into account since the
optimization processes then can re-assign schedule elements as needed.

1.1 Event chains

An important difference between the HSTP and DHSTP is the addition of event chains.
Event chains describe a requirement for a series of events to be placed at certain timeslot
offsets relative to a shared origin, e.g.:
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Table 1: Hard constraints in the DHSTP
Hard constraints

Placement Events requires a timeslot
Event locks Events requiring a specific timeslot/room
Resource conflict Limits on usage of resources in a timeslot
Availability Events or resources only being available in certain timeslots
Event chains Events required to take place in relation to other events
Work limit Teachers not having more than a set amount of events per day
Days off Teachers having at least a set amount of days off
Days off stability Days off each week for a teacher not differing by more than 1
Day conflict Events in the same course not being assigned to the same day

– Events in the chain have to be assigned the same timeslot.
– Events in the chain must be assigned contiguous timeslots, in order.
– One event in the chain must occur exactly 2 timeslots after another event.

Moving where this shared origin lies within the schedule therefore changes the
correct position of the event chain. These are of great practical use, e.g. when plan-
ning educational days with a specific theme, but large chains can cause problems for
schedulers due to the significant space required in the schedule to place these correctly.

1.2 Objective Function

A MIP-model for the DHSTP has previously been presented [2,4], including the hard
constraints described in Table 1. This model is largely applied here, with one significant
change: Event chains are changed from a hard constraint to multiple heavily penalized
soft constraints.

To do this, the following goals for placing event chains have been identified:

1. Events in event chains are assigned correct timeslots relative to each other
2. Events in event chains are assigned a timeslot

Regarding goal 1: A definition is required for when an event in an event chain is
assigned correctly. As seen in Fig. 1, there can be multiple interpretations of the same
schedule, potentially leading to different amounts of correctly placed events. This can
be alleviated by deciding on a specific event in the event chain (the "root-event" of the
chain), which, if placed, the other events must be placed relative to. In Fig. 1, Case 1
corresponds to having the event in timeslot 5 as the root-event, and Case 2 corresponds
to having the event in timeslot 1 as the root event. Since the only way to assess if events
are correctly placed is if the root-event is placed, a penalty is added on events in event
chains without the root-event assigned. Additionally, a penalty is added to incorrectly
placed events in the chain when the root-event is placed. These penalties in combination
achieve goal 1 and partly goal 2.

Regarding goal 2: This is achieved by penalizing unassigned events in event chains,
only when the root-event of the chain is placed, since it is deemed undesirable to have
the event chains only partly scheduled.

The objective of the model is therefore to minimize a weighted sum of:
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Case 1
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offset: 1

offset: 3

Case 2
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offset: 0

offset: 1

offset: 3

Case 3

1
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3

4

5

offset: 0

offset: 1

offset: 3

Correctly placed

Incorrectly placed

Fig. 1: Two cases scheduling three events in an event chain, on a single day with five
timeslots. The required relative offsets for the three events is noted.
Case 1: Event with offset 3 is considered as being correctly placed.
Case 2: Event with offset 0 is considered as being correctly placed.
Case 3: All events are correctly placed.

1. The number of events without a timeslot assigned,
2. The number of events without a room assigned,
3. The index of the timeslots assigned to each event,
4. The number of teachers scheduled at timeslots they wish not to be scheduled on,
5. A desirability-score of the rooms assigned to events,
6. The number of events on neighboring days for courses,
7. The number of idle timeslots for teachers and students,
8. The number of rooms used by each course in excess of one,
9. The number of work days for teachers,

10. The number of days where students have zero events scheduled,
11. The number of days where teachers have exactly one event scheduled,
12. The maximum difference in the number of scheduled events in a week for courses,
13. The number of events in event chains without the root-event placed,
14. The number of incorrectly placed events in event chains with the root-event placed,

and
15. The number of unassigned events in event chains with the root-event placed.

2 Solution Methods

A dataset of 20 instances of schedules for 1 and 2 weeks from [2], with between 300 and
2500 events and between 140 and 660 classes, are used. As mentioned, it is of interest
to create schedules of 10 or more weeks, but due to the results from the MIP-approach
in [2] on 1 and 2 weeks, it is deemed infeasible to find exact solutions to the DHSTP
for longer planning horizons, and a metaheuristics-approach is therefore used. Adaptive
Large Neighborhood Search (ALNS) and Tabu Search (TS) algorithms are proposed for
generating solutions for schedules of 1, 2, 10, 20, and 40 weeks. For schedules of 10 or
more weeks, three approaches are furthermore explored:
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– A cold-start approach, where a greedy heuristic is applied to empty schedules of
10, 20, and 40 weeks, which are then used as starting points for the metaheuristics.

– A warm-start approach, where schedules for 1 or 2 weeks are created with the cold-
start approach, which then are duplicated to create initial schedules of 10, 20, and
40 weeks. Illegally placed events are removed and metaheuristics are again applied.

– A two-stage approach, where timeslots are assigned first and rooms assigned af-
terward, as outlined in [2]. This approach can be combined with the cold-start or
warm-start approaches.

3 A brief conclusion

At the presentation, a summary of the model used and conclusions drawn from the
results from using the above methods will be presented.
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Abstract. In this work, we extend the original Uncapacitated Examination Timetabling
problem by introducing capacity constraints that limit the number of exams
schedulable per timeslot and, to take into account possible unexpected disrup-
tive events, by considering such a capacity as a random variable. We propose a
two-stage Stochastic Programming approach for this stochastic variant in which
recourse actions allow rescheduling exams in successive timeslots or moving stu-
dents to spot-market rooms. Then, we conduct an in-depth analysis of the impact
of uncertainty on solutions using a deterministic equivalent Mixed-Integer Linear
Programming formulation. Additionally, we plan to develop a Progressive Hedg-
ing algorithm, leveraging the efficiency of a specialized optimizer [4], to address
the computational challenges posed by the stochastic nature of the problem even
for small-medium size instances. Preliminary results are promising, underscoring
the significance of accounting for stochasticity in the problem formulation.

Keywords: Examination timetabling, Uncertain timeslot capacity, Two-stage Stochas-
tic Programming with recourse

1 Introduction

In the context of university organization, the Examination Timetabling problem (ETT)
aims at assigning exams to timeslots ensuring that i) each exam is scheduled exactly once
during the examination period, ii) two conflicting exams are not scheduled in the same
timeslot, and iii) the total penalty associated with the created timetable is minimized
[6]. Among many existing formulations, the most classic, known as Uncapacitated ETT
(UETT), was introduced in [5] and specifically penalizes exams with students in common
scheduled within a distance less than or equal to 5 timeslots.

In the UETT, it is assumed that the number of exams scheduled in each timeslot is
unbounded. However, in practical applications, physical constraints (number of available
rooms and their capacity) must be taken into consideration. In addition, after the exam
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calendar is released, uncertain events may occur and reduce the day-by-day availability
of resources (rooms, teachers, timeslots), thus making the original schedule infeasible.
To address this issue, we investigate a Stochastic Capacitated ETT under uncertain
timeslot capacity (S-CETT), in which the number of exams schedulable in each timeslot
is modeled using a random variable. In particular, we formulate the S-CETT as a two-
stage Stochastic Programming (SP) problem and study the impact of uncertainty on
timetables given the implementation of reasonable recourse actions. Finally, we plan
to implement an efficient algorithm approach hybridizing an SP decomposition-based
matheuristic and a tailored state-of-the-art heuristic method.

To our knowledge, little attention has been paid to uncertainty in the context of
ETT problems (see [2,3]). Instead, the problem of finding a robust timetable for the
Curriculum-Based University Course Timetabling problem subject to different types
of disruptions has been addressed in [1,7,10]. Such a problem is usually modeled as
a minimum perturbation problem with a bi-criteria objective function, where the first
objective is related to the quality of the solution and the other is about the robustness of
the timetable.

2 ILP formulation for the S-CETT

Let us consider a set ⇢ of exams, to be scheduled during an examination period at the
end of the semester, and a set ( of students. Each student is enrolled in a non-empty
subset of exams. The examination period is divided into) ordered timeslots, each having
a scheduling capacity of ⌫ exams. Let =4 be the number of students enrolled in exam
4 2 ⇢ . Given two exams 4, 40 2 ⇢ , let =4,40 be the number of students enrolled in both.
Two exams 4, 40 2 ⇢ are called conflicting if they have at least one student enrolled
in both, i.e., if =4,40 > 0. Let us define the set ⇠ of conflicts, including all the exam
pairs [4, 40] with 4, 40 2 ⇢ for which =4,40 > 0. Conflicting exams cannot take place
during the same timeslot. Moreover, to foster the creation of timetables that are more
sustainable for the students, a penalty is assigned for each couple of conflicting exams
scheduled up to a distance of 5 timeslots. More precisely, given two exams 4, 40 2 ⇢
scheduled at distance 8 of time-slots, with 1  8  5, the relative penalty is 2(5�8)

=4,40 .
Finally, let ⌫̃C be a stochastic variable representing the loss of capacity of scheduled
exams in timeslot C = 1, . . . ,) , with 0  ⌫̃C  ⌫.

Let us define a binary variable H4,C determining the assignment of exam 4 2 ⇢ to
time-slot C = 1, . . . ,) , and binary variable D8

4,4
0 which takes value 1 if the conflicting

exams pair [4, 40] 2 ⇠ is scheduled 8 = 1, . . . , 5 time-slots apart, and 0 otherwise. Then,
our S-CETT can be formulated as follows:

(S-CETT) min
1
|( |

5’
8=1

’
[4,40 ]2⇠

2(5�8)
=4,40D

8

4,4
0 (1)

subject to
)’
C=1

H4,C = 1 4 2 ⇢ (2)

H4,C + H40 ,C  1 [4, 40] 2 ⇠, C = 1, . . . ,) (3)
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H4,C + H40 ,C+8  1 + D8
4,4
0 [4, 40] 2 ⇠, 8 = 1, . . . , 5, C = 1, . . . ,) � 8 (4)’

42⇢
H4,C  ⌫ � ⌫̃C , C = 1, . . . ,) . (5)

The objective function (1) minimizes the overall penalty by summing up individual
penalties for each couple of conflicting exams. Constraints (2) ensure that each exam
is scheduled exactly once. Constraints (3) ensure that two conflicting exams can not be
scheduled in the same timeslot. Constraints (4) ensure that if two conflicting exams are
scheduled 8 timeslots apart (i.e., both the H variables in the inequality take value 1), then
the relative D variable must take value 1 as well. Finally, constraints (5) ensure that the
number of exams scheduled in a timeslot is limited by the stochastic capacity ⌫ � ⌫̃C .

3 SP framework and solution approach

We tackle the problem using a two-stage SP paradigm, in which first-stage variables
concern the pre-scheduling of exams to timeslots. In contrast, the second-stage recourse
actions include the possibility of i) rescheduling the exams in a different timeslot after the
pre-scheduled one and ii) moving an exam to a spot-market room in the same timeslot.
Note that it is possible to relocate any number of exams to the spot-market room. This
way the model always guarantees a feasible solution. However, in addition to the basic
penalties due to exam incompatibilities, extra penalties, proportional to the number of
students affected by rescheduled exams or moved to the spot-market room, must be
considered in the expected value.

To practically address the problem via state-of-the-art MIP solvers, we create a deter-
ministic equivalent formulation by approximating the behavior of the random variables
involved through a finite (but sufficiently large) number of future scenarios, each occur-
ring with a given probability. This allows us to validate our model by assessing standard
SP indicators, such as the Value of the Stochastic Solution (VSS) and the Expected Value
of the Perfect Information (EVPI). VSS represents the penalty saving given by using
our SP approach instead of a deterministic model, while EVPI represents how much we
would be willing to pay for not having uncertain data. Figure 1 presents boxplots on
the percentage values of these two indicators obtained on a set of 20 small instances,
each with |⇢ | = 10, ) = 7, ⌫ = 2, and 20 scenarios. VSS and EVPI both have an
average value of around 30%, indicating that there is a significant gain in accounting for
stochasticity but also a notable gap from the case in which the values of all random vari-
ables are known beforehand. The VSS, ranging from 10 to 50%, particularly proves the
importance of a more robust provisional schedule and more flexible recourse decisions.

In the same figure, we also show an additional indicator, named Stochastic Loss (SL),
that measures the percentage difference between the first-stage penalty in our stochastic
variant and the objective function value of the deterministic problem. This indicator
shows that, on average, the solutions of our variant include a 65% higher penalty when
it comes to the provisional schedule of the exams to be more conservative and handle
the uncertainty of future events more effectively.

Apart from the above validation, the use of an exact technique can be computation-
ally too expensive against real-size instances with a representative number of scenarios.
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Fig. 1: Percentage values of VSS, EVPI, and SL over all the benchmark instances.

Hence, we plan to develop a heuristic convergence framework based on a Progressive
Hedging (PH) algorithm ([8],[9]), which decomposes the problem per scenario and
forces a consensus solution among the scenarios via an Augmented Lagrangian Re-
laxation approach. To solve the deterministic mono-scenario subproblems, iteratively
created during the PH, we will use the Simulated Annealing-based algorithm devel-
oped in [4] for the UETT conveniently adapted to the capacitated version. Extensive
computational results of the PH framework will be presented at the conference.
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Abstract. Employee absences often lead to disruptions in rosters, necessitating
last-minute changes to employee schedules. A common strategy to minimize the
adverse effects of these changes is to assign employees to on-call duties, thereby
increasing the robustness in the rosters. This study explores the effectiveness of a
data-driven robust rostering approach, using predictions of employee absences
to schedule an appropriate number of on-call duties. Numerical experiments
demonstrate how the accuracy of absence predictions significantly impacts the
robustness of the resulting rosters. We introduce a methodology to assess the
conditions under which a data-driven robust rostering approach can outperform
simple, non-data-driven rostering strategies.

Keywords: Personnel rostering, Employee absenteeism, Robustness, Proactive
rostering, Machine learning.

1 Introduction

Employee absenteeism is the term used to describe when an employee is not present
at work during their scheduled hours. Intertwined factors such as health issues, diffi-
culties in achieving work-life balance and instances of workplace harassment can all
contribute to employee absenteeism. Whatever the root cause, absenteeism typically has
several negative effects on organizations: reduced productivity, additional costs from
overtime or from hiring and training replacement employees, low team morale and job
disengagement [2].

There have been several studies on how to make personnel rosters more robust with
respect to disruptions caused by employee absenteeism. The most common approach
is to include buffers in the roster that manage unexpected absences through the use of
surplus resources. Capacity buffers involve assigning more employees than required to a
shift [3]. Meanwhile, reserve shift buffers are created by assigning a subset of employees
to special on-call duties which can be converted into working shifts to cover for absences
[4].
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Approaches employing buffers typically have one or more parameters to set buffer
size, thereby affecting the degree of robustness of the generated roster. These parameters
are usually set by a human expert or based on results from extensive empirical studies. In
our work, we investigate how a Machine Learning (ML) model for predicting employee
absenteeism can help determine a suitable number of reserve shifts. More specifically,
we analyze under which conditions an ML-informed robust rostering approach can
outperform non-data-driven approaches that schedule a fixed number of reserve shifts
on each day.

2 Problem definition

The considered personnel rostering problem is based on a general problem definition
[1]. The goal is to find an assignment of shifts to employees subject to various personal
and organizational constraints. Table 1 provides an overview of the problem’s hard and
soft constraints. The roster of the preceding scheduling period is taken into account
to correctly evaluate the constraints at the beginning of the current scheduling period.
Robustness is ensured by including a number of reserve shifts in the roster on each day
of the scheduling period. The objective function is a weighted sum of the scheduled
employee wage costs (regular, overtime and on-call), the wages of interim personnel
needed to cover any understaffing and a penalty term for assigning fewer reserve shifts
than required.

Hard constraints

At most one shift assignment per day per employee
Skill requirements
Forbidden shift succession (e.g. no early after late shift)
Minimum number of days worked per employee
Maximum number of consecutive working days
Maximum number of consecutive night shift assignments
Shift and day off requests

Soft constraints

Minimum staffing requirements for each day, shift and skill
Maximum number of days worked per employee
Number of reserve shifts in the roster

Table 1: Hard and soft constraints in the problem.

3 ML-informed robust rostering

The problem described in Section 2 is modeled as an integer programming problem
and solved using Gurobi 10.0.3. The number of reserve shifts required on each day is
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determined by an ML model. In contrast to other studies, we do not actually train an ML
model. Instead, we propose a way of simulating the predictions a model would make
at a given prediction performance level, i.e., given the ground truth and a performance
characterization of the ML model, our methodology derives what predictions the model
would make. These predictions are used to determine the number of reserve shifts that
must be included in the roster. Predicting whether or not an employee will be absent on
a given day is a binary classification problem. We use the True Positive Rate U and True
Negative Rate V to characterize the prediction performance of the ML model. Figure 1
shows a confusion matrix, used to compare ground truth and model predictions for binary
classification problems. Given a confusion matrix, we can compute U = )%/()%+�#)
and V = )#/()# + �%).

Ground truth

Positive Negative

Predicted
Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Fig. 1: Confusion matrix.

The probability that an employee is absent on a given day, derived from historical
data, is denoted by d. Note that we do not consider employee-specific absence prob-
abilities, but instead use the average over all employees. The correct prediction of an
absence by the ML model depends, with probability U, on whether the realization will be
correctly classified as a True Positive. With probability 1 � U, a true absence will result
in a False Negative. Similarly, if the employee is not absent, this will be considered a
potential False Positive with probability 1� V. Any potential False Positive will become
a proper False Positive with probability d, so that the overall number of absences will be
reasonable even when V is very small. Each time the prediction results in a True Positive
or a False Positive, the number of reserve shifts required is increased by one. In case of
True Negatives or False Negatives, the number of reserve shifts is unaffected.

The robustness of the generated roster is measured by the expected re-rostering
cost. This cost is computed by running several simulations in which employees become
absent and the roster is repaired using an exact re-rostering method. The re-rostering
costs obtained for different values of U and V are recorded and compared against those
obtained by a non-data-driven baseline approach. More specifically, we compare against
an approach from the literature that has no knowledge about what will happen and instead
schedules a fixed number of reserve shifts on each day [4]. The results of numerical
experiments enable us to identify for which levels of sensitivity and specificity better
solutions are generated. Detailed results will be presented at the conference.
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Abstract. As the current healthcare labour market is volatile, due to employees
having bad experiences with irregular shifts and unconventional working hours,
it is important to make an effort to retain existing and attract new healthcare
employees. This research explores the effect of scheduling decisions on job sat-
isfaction of nurses in Dutch hospitals. We examine if nurse satisfaction can be
improved using mathematical optimization, and at what cost. Incorporating re-
sults from interviews and a survey, this research presents a formulation of the
nurse scheduling problem including both capacity coverage and nurse satisfaction
in the problem’s objective. The problem is solved using an exact (MIP) and a
heuristic (VDS) approach. Using benchmark instances for the nurse scheduling
problem, results show that nurse satisfaction can be improved without decreasing
the capacity coverage.

Keywords: Nurse scheduling problem, Schedule satisfaction, Nurse job satisfac-
tion, Mathematical programming, Variable depth search

1 Introduction

A recent study in The Netherlands reports an expected shortage of 140,000 healthcare
employees by 2031 [4]. Two main reasons for this shortage are an increased demand
for healthcare and a shortage on the healthcare labour market. The irregular shifts and
unconventional working hours make nurses quit their profession and discourage others
to apply. In order to keep nurses healthy and prevent burn-outs, their personal scheduling
preferences should be incorporated in the scheduling process [3,6]. However, in practice,
nurse preferences are complex and difficult to quantify in a single score per nurse per
schedule. In this research, we combine the results of interviews and a survey to redesign
the objective in the nurse scheduling problem. This particular combination of research
methods is novel, as previous research has either focused on the quantitative solution
methods, or used a qualitative approach to study nurse job (schedule) satisfaction, which
mainly originates from human resources or social sciences fields.

2 Methodology

To gain an understanding of the preferences of nurses, we use a mixed-methods approach.
This approach combines quantitative and qualitative methods to answer research ques-
tions on complex issues in the social sciences [5]. First, interviews were held at the
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Martini Hospital (Groningen, The Netherlands) to gain an understanding of the most
relevant preferences nurses have regarding the scheduling process. Based on the results,
we cluster nurse preferences in five categories: incidental requests for (not) working a
particular day or shift; preferences regarding the length of a consecutive series of shifts
(consecutiveness); the shift types nurses are assigned to work; the scheduling of week-
end shifts; and the scheduling of night shifts. Second, we designed a survey with closed
questions on preferences for these five clusters. The survey concludes with a question
asking participants to divide a total of 50 points across these five clusters to ask about the
relative importance for each of these clusters. Results of the survey show that nurses find
the adherence to their requests and their consecutiveness preferences most important
for their schedule satisfaction. Also, consecutiveness preferences are correlated with the
number of contract hours nurses are assigned to work. Part-time nurses typically prefer
to work between 2 and 3 consecutive days on average whereas full-time nurses prefer
to work a consecutive series of minimum 3 and maximum 4 shifts. Finally, we use the
results of the interviews and surveys as input for our mathematical formulation. As there
are multiple objectives, for both the planner and nurses, we make use of a weighted sum
approach, as this is easy to interpret by the users and the weights can easily be adjusted
to their preferences.

3 Mathematical formulation

Most nurses selected the requests and consecutiveness as their top two priorities. The
consecutiveness penalty for a nurse (8 2 #) is calculated based on the difference between
the actual consecutiveness of the assigned blocks of shifts and the simulated preferences
of the same nurse. Similarly, the request penalty for a nurse (8 2 #) is calculated
by counting the number of times the schedule fails to meet indicated preferences. An
individual’s satisfaction score will therefore be a weighted sum (with 0  U8  1) of
these two indicators of satisfaction:

%8 = U8 · consecutivenessPenalty
8
+ (1 � U8) · requestPenalty

8
8 8 2 # (1)

The individual satisfaction scores are aggregated using the worst-off score and the
sum of all scores. These can be balanced using W1, W2 2 {0, 1}, respectively, depending
on the scheduling policy. By setting W1 > 0, additional penalty is added for not dividing
the total sum of satisfaction evenly across the employees which can be regarded as
unfair. The objective function combines the satisfaction and coverage scores using the
parameter 0  V  1:

min V(W1 max
82#

%8 + W2
’
82#

%8) + (1 � V) (
’
32⇡

’
C2)

H3CE
<8= +

’
32⇡

’
C2)

I3CE
<0G) (2)

with H3C the total number of unassigned shifts, I3C the total number of over-assigned
shifts for day 3 and shift type C; E<8= the penalty per unassigned shift, and E<0G the
penalty per over-assigned shift.
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4 Computational results

Results are obtained using data from the nurse scheduling benchmark instances [2].
These instances contain data on the available employees, shift types, cover requirements
and nurse requests. We will use small instances 1, 2 and 3, which have a scheduling
period of two weeks and up to 20 employees, and large instances 11 and 12, which have
a scheduling period of four weeks and up to 60 employees. These instances are solved
for both the objective function without satisfaction (only coverage penalty, V = 0), and
with the satisfaction scores V = 0.5, W1 = 1, and W2 = 1. Since we aim to optimize for
nurse satisfaction using the consecutiveness preferences, we simulate these preferences
based on the obtained probability distributions per contract type through our survey. The
problem is modelled as a mixed integer programming model (MIP) and is solved using
IBM ILOG CPLEX 22.1.0, on an Intel Core i7 2.8 GHz processor and 16GB RAM, and
using a heuristic based on a Variable Depth Search (VDS) based on Burke et al. (2013)
[1].

Table 1 shows the results obtained using the MIP with a maximum runtime of 1
hour, whereas Table 2 shows the results obtained using VDS with a runtime of 1 hour,
using a fixed set of simulated preferences for the nurses. These results show that nurse
satisfaction can be improved without decreasing the coverage by including satisfaction
in the objective function of the nurse scheduling problem. To investigate the effect of
the simulated preferences, we also run the instances with newly generated preferences
for the nurses in every run. The MIP is run 100 times for small instances, and 5 times for
large instances, due to the higher runtime. In all simulation runs, the results still hold,
where the coverage stays the same and the nurse satisfaction is improved.

Table 1: MIP results with V = 0 and V = 0.5
V = 0 V = 0.5

instance time (s) gap coverage max %8
Õ
%8 time (s) gap coverage max %8

Õ
%8

1 0.203 0 600 2 5.807 1.078 0 600 1 2.548
2 7.781 0 800 5 12.232 26.36 0 800 1 3.785
3 32.10 0 1000 4 21.371 490 0 1000 1.77 8.67

11 9.36 0 3423 4 60.432 3600 0.01 3423 4 33.163
12 3600 0.000 4001 9 82.062 3600 0.018 4000 9 70.872

5 Conclusion

The two most important indicators of nurse schedule satisfaction are the adherence to
requests made by nurses to (not) work specific shifts and the consecutiveness of assigned
shifts in the schedule. When nurses are assigned too many or too few consecutive shifts
per block, their schedule satisfaction decreases as they cannot balance their workload
with enough rest. However, the minimum and maximum number of preferred consecutive
shifts differs per nurse because of personal differences. Additionally, the importance of
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Table 2: VDS results with V = 0 and V = 0.5, runtime of 1 hour
V = 0 V = 0.5

instance coverage max %8
Õ
%8 coverage max %8

Õ
%8

1 600 2 5.807 600 1 2.548
2 800 5 12.232 800 1 3.785
3 1000 4 21.371 1000 1.77 8.67

11 3827 5 27.36 3827 5 27.36
12 4900 6.025 38.386 4900 6.025 38.386

requests versus the consecutiveness of shifts differs per person. Therefore, including
these personal preferences in the objective function of a nurse scheduling problem
requires input from the nurses. The effect of including nurse satisfaction in the objective
function shows that the satisfaction of the nurses can be improved without decreasing
the coverage. Therefore, it does not cost anything in terms of coverage to improve the
satisfaction of the nurse.
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1 Introduction

The invigilator assignment problem (IAP) aims at providing an invigilator schedule,
appointing sufficient invigilators to all exams of a predetermined examination schedule.
These invigilators perform the required logistic and administrative tasks when students
take exams, such as distributing copies, preventing students from cheating, or answering
questions. Even though the need for research on the IAP had already been raised in the
nineties (see, e.g., [2]), only recently the problem gained more importance in literature
(e.g., [5] and [6]).
As stated above, the IAP uses a predetermined examination schedule, the outcome of the
widely studied examination timetabling (ETT) problem, as an input. A first variant of the
ETT, known as uncapacitated ETT, assigns a set of examinations to a fixed number of
periods while avoiding students having to take two exams at the same time [3]. A second
variant, the capacitated ETT, also considers the assignment of exams to examination
rooms with individual sizes, thereby limiting the number of exams that can be taking
place concurrently [7]. The assignment of exams to timeslots and rooms is managed on
the university level, while the assignment of invigilators is situated on the faculty level.
Moreover, the ETT problem is typically solved long before the actual exams take place,
so students can optimally plan, whereas the IAP can be solved until a few days before
the exams, to capture the invigilator availabilities as accurate as possible. Therefore,
a sequential solution approach has been chosen to address those problems. For an
extensive overview of educational timetabling problems, including the ETT problem,
we refer to [4].
Previous research on the IAP mostly focused on providing formulations and heuristic
solutions for a variety of case-specific problems. A general formulation seems to be
missing, as well as insights on the complexity of the problem at hand. In this research,
we want to summarize common elements identified through the different previous papers
and provide insights on the complexity of the proposed base model and some interesting
variants.
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2 Problem description

We identify the following base problem, which forms the foundation of almost any IAP
studied in literature. In the IAP, we are presented with a set of examination periods %,
invigilators �, and exams ⇢ . Each exam 4 2 ⇢ is preassigned to a period ? 2 % and
requires 34 invigilators. Assigning invigilator 8 to exam 4 results in cost 28,4. This cost
represents the preference of the invigilator, where a more preferred time slot induces a
lower cost and a less preferred time slot induces a higher cost. An understaffing cost f
is incurred for each invigilator allocated less than needed. Notice that this cost will be
much higher than any of the preference costs 28,4. The IAP is to assign invigilators to
exams in a way that minimizes total costs related to invigilator assignments and potential
understaffing. Additionally, the solution must satisfy two hard constraints: C1 and C2.

C1 Each invigilator is limited to supervising at most one exam in any given period,
ensuring there are no scheduling conflicts.

C2 The total number of exams assigned to invigilator 8 should be between F
8

and F8 .

These constraints may result in incomplete assignments for some exams, as captured
in the model by the understaffing costs. In practice, these remaining invigilators are
staffed manually after personal correspondence with invigilators who have less than
F8 assignments and verifying their availability. If desired, this decision could also be
included in the model by removing the understaffing cost and including a preference cost
equal to the understaffing cost for those time slots outside the initially provided invigi-
lators’ preferences. In practice, this also requires manual verification of the invigilators’
availability. A final alternative could be to treat C2 as a soft constraint, but according to
our experience this could result in very unbalanced solutions.

Theorem 1. The IAP can be solved in polynomial time.

Proof. We show that IAP can be modelled as a special case of the Minimum Cost
Network Flow Problem (MCNFP), which can be solved in polynomial time [1].
MCNFP
Input. A directed graph ⌧ (+ , �) with a net supply 18 for each vertex 8 2 + , and a
capacity D8, 9 and cost 28, 9 for each arc (8, 9) 2 �.
Output. A minimum cost flow respecting the net supply at each vertex and the capacity
at each arc.

To construct the graph ⌧, we start by creating a node for each invigilator 8 2 � with
a net supply of F8 and for each invigilator also |% | invigilator-period nodes with zero
net supply. Each invigilator node is connected to its corresponding period nodes with
arcs of zero cost and unit capacity.

Next, for each exam 4 scheduled in period ?, an exam node is created with net supply
�34, linked to all invigilator-period nodes associated with period ? with unit capacity
arcs costing 28,4.

Finally, we add two dummy nodes. A first dummy node, G, has net supply equal to
B =

Õ
42⇢ 34 and is connected to each of the exam nodes using an arc with capacity

34 and cost f, indicating potential understaffing for exams. Secondly, to balance the
network, we include a dummy exam node H with a net supply of �C = Õ

82� F8 and link
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it with invigilator nodes using a zero-cost arc with capacity F8 � F
8
. Finally, we add a

zero-cost arc from the dummy-invigilator node to the dummy exam node with capacity
E. ⇤

In order to solve the associated MCNFP instance, we use a standard linear pro-
gramming formulation, which is known to be totally unimodular (i.e., it is sufficient to
consider the LP-relaxation to obtain integral solutions) [1]. This way, we obtain optimal
solutions within seconds, even for instances involving hundreds of exams. Although, this
base problem recurs in most of the studied literature, different objectives and constraints
are needed to tackle context-specific problems, making it hard to combine all of them
in a single model or definition.
In this talk, we show how the addition of certain constraints or objectives turns the
problem NP-hard, e.g., including fairness costs to limit the difference in satisfaction of
different invigilators. We contribute to the literature by discussing the complexity of the
base model and some interesting variants.

Fig. 1: Network⌧ used to transform IAP into an instance of MCNFP. Numbers between
brackets denote the net supply at each nonde, and the cost and capacity at arcs.

3 Case study

A variant of the model above was used to schedule invigilators atthe faculty of Economics
and Business Administration at Ghent University. The tests were conducted on an
instance with 195 exams and a total demand of 1140 invigilators, spread over 67 time
periods and 321 invigilators. Prior to the implementation of our model, invigilators had to
fill in a shared file to immediately register for specific exams and rooms in a First Come,
First Serve (FCFS) manner, oftentimes resulting in unfulfilled demand. To assess the
benefit of an optimization-based solution, we compare it to various simulation runs using
the FCFS principle that varied the arrival sequence of invigilators for a predefined set of
available time slots per invigilator. Invigilators would be available for 5, 10, or 20 time
slots and register for 3-4 exams as long as there were exams during such time slots that
still required invigilators. This approach is compared to the optimization-based approach
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where the invigilators’ preferences are used to find an optimal solution. Table 1 compares
the optimal solution to the simulation runs by reporting the percentage of demand that
is covered by available invigilators (Coverage %) and the average preference values
per assignment (Avg. pref.) with lower preference values indicating more preferable
assignments. One can observe the high variability in performance depending on the
random sequence created for the FCFS approach, indicating a low robustness of this
approach. The optimal approach significantly reduces the number of missing invigilators
compared to any result obtained by the FCFS principle. In some cases, this increases
average preference values, but this effect is nullified when the number of preferences
per invigilator is sufficiently large. All experiments were solved optimally on a laptop
with 8GB RAM and an Intel m5-6Y57 processor with 1.1 GHz in less than 3 seconds.

During the pandemic period we implemented an adapted version of this base model,
minimizing invigilator contacts instead of preference values. A contact would occur
for each pair of supervisors assigned to the same examination room at the same time.
To solve this computationally intractable problem, we developed a fix-and-optimize
heuristic which will be presented during this talk along with results from the real-life
case study at the faculty of Economics and Business Administration of Ghent University,
Belgium.

Table 1: FCFS results over 10,000 simulation runs compared to optimal solution.
Approach Pref./Inv. Coverage % Avg. pref.
Optimal 5 75.70 2.59
FCFS 5 [73.07-75.18] [1.8-1.95]
Optimal 10 96.74 3.85
FCFS 10 [86.49-90.70] [3.02-3.34]
Optimal 20 100 4.22
FCFS 20 [92.89-97.71] [4.15-4.86]
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Abstract. The delivery of judicial services by courts involves a labour-intensive
service supply chain attributed to a diversity of services within and between the
law sectors, the scale of the courts, and the relationships with external organi-
sations. Court operations are planned with the goal of maintaining accessibility
for litigants in terms of timeliness and transparency while maintaining a balanced
work environment for court staff. Despite current efforts, courts experience low
clearance rates and high waiting times.
Given the societal importance of the judicial system and the vast number of
operational challenges, it is surprising that so little research has been done within
the OR/OM community. To classify the court’s planning and control activities, we
propose a hierarchical framework. Its aim is to facilitate a common language for
research and practice. Concepts from widely used frameworks in domains such
as healthcare, manufacturing, and project planning are studied as inspiration.
We use the framework to position the existing literature. In a case study of the
Dutch judiciary, we analyse the various planning activities and position them
into the framework. This facilitates the development of a research agenda and
innovation strategy for the Dutch legal system.

Keywords: Hierarchical decision making, Framework, Resource capacity plan-
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1 Introduction

The courts within the judicial system involve a labour-intensive service supply chain,
where planners are faced with the challenge of maintaining accessibility for litigants
while balancing the workload of court staff (clerks and judges).

Over the past 50 years, to the best of our knowledge, only 42 articles have been
published that adopt operation research and management to court operations. One of the
earlier papers,[3], researched the impact of organisational changes on delay for felony
defendants through simulation. [2] proposed a two-step ILP model that calculates the
optimal number of judges per district and distributes judges over districts by maximising
the disposal of cases. [4] developed a strategic model to define court districts and the
locations of courts within those districts. [1] proposed a model to schedule sessions and
allocate judges to them by minimising the number of violations per judge. This paper is
one of the few that shows similarities with our problem.

The central problem of this research is the combined decision of scheduling hearing
blocks over time and the allocation of resources to these hearing blocks. When made
correctly, the service and case mix the court aims to cover are met, aligning demand and
supply. Currently, the court of law experiences difficulties in reaching the agreed case
mix. Solving the central problem results in a hearing block schedule, which reserves
sufficient capacity for court case groups. Given such a block schedule, cases can be
assigned to these blocks in the subsequent operational Case Booking Problem (CBP).
In this research, we only focus on the Hearing Scheduling Problem (HSP), part of the
tactical level of planning problems in this service supply chain.

Figure 1 shows an example of a non-cyclic hearing block schedule. As can be found
in the example, hearing blocks for specific case groups are scheduled on day-parts. These
blocks require particular resources in terms of courtrooms and skilled staff members.
Some blocks need three judges and one clerk; others need only one judge and one clerk,
later referred to as multi-judge or single-judge blocks. Moreover, staff members are
allocated to on-call duties required for urgent cases entering the court system.
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Fig. 1: Example of a hearing block schedule as used in the Court of Law

Fig. 2: Skill set (experience level; ex-
pertise area) required for chairs during
a multi-judge or single-judge blocks.

Fig. 3: Execution of desk time activities
in time windows.

The capacity and skill set of the staff members determines the maximum number of
scheduled hearing blocks. So, when generating the schedule, the assigned staff member
must be available and have a suitable skill set. Each staff member has one experience
level and could have multiple expertise areas. Figure 2 visualises that each chair part of
a hearing block requires a specific combination of experience level and expertise area.

Highly interesting to this problem is the consumption of capacity by desk activities
that prepare and finalise cases handled on the hearing blocks. When scheduling a
hearing block, the chosen staff members must have sufficient capacity for preparation
and finalisation in a specific time window. Figure 3 shows that a block scheduled in
week 6 must be prepared in weeks 1 to 3 and finished in weeks 8 to 10. Depending on
the case group, preparation and finalisation take between 4 and 10 hours. Desk time
activities for different blocks can be parallel executed and staff members decide when
this is done during the allowed window.

In the remainder of this extended abstract, we introduce two MILP variants for
the desk time activities and we explain our experimental design, which analyses the
computational performance of different formulations for the desk time assignment. We
conclude with the variant that outperforms the other and further research steps.

2 Model formulation

In this section, we provide important parts of our MILP formulation for the HSP. We
have a set of hearing block types H , a set of chairs per type h I⌘, a set of courtrooms R,
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a set of day parts D, and a set of staff members S. In line with the proposed definition
for the HSP, the following decisions are made:

-⌘,A ,3 =

(
1, if hearing block of type ⌘ is assigned to courtroom A on day part 3.
0, otherwise.

.B,⌘,8,A ,3 =

8>>><
>>>:

1, if staff member B is allocated to slot 8 in hearing block of type ⌘
scheduled in room A on day part 3.

0, otherwise.

The primary objective of the HSP is to maximise the number of hearing blocks over
the schedule horizon:

max
’
⌘2H

’
32D

’
A2R

-⌘,A ,3

The decisions are made under the condition that each staff member is assigned at most
once per hearing block, courtroom, and day part combinations. Moreover, a hearing
block can be allocated once per combination of a day part and courtroom, and only if
courtroom r is available on day part d. As Section 1 explains, assigning a staff member
with the appropriate skill set for a slot part of the hearing block is key. It is also important
that, at most, one eligible staff member is assigned to a chair. At last, when the multi-
judge block is required, all slots must be filled with the required staff members. We
elaborate on the formulations of these restrictions in the full paper.

Fig. 4: Concept behind variant B for desk time activities

An interesting condition is the capacity consumption by desk activities associated
with an assigned hearing block. We decide to formulate this in two different ways.
Variant A assigns desk time in hours to a day part d for each scheduled hearing block
without exceeding a staff member’s capacity. Variant B is inspired by inventory balance
equations and aggregates desk time into an inventory that is consumed when a desk
activity needs to be finished. Figure 4 illustrates this concept. For a block scheduled on
day part 8, inventory for preparation is increased within the allowed window from day
part 3 till 5 and thereafter consumed on day part 5.
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3 Solution method and experimental design

Our experiments focus on the computational performance of different formulations for
desk time assignments, using generated instances based on real-life data. We generated
10 instances per instance class. Each class has a different schedule period, which in-
creases from 3 to 15 weeks. A maximum of 15 weeks is chosen, because the court of law
uses quarterly schedules. Between individual instances within classes, the staff member
availability per day part is uniformly distributed between 2 and 4 hours. All the other
parameters remain similar between individual instances and instance classes.

The MILP is implemented in AIMMS and solved by GUROBI 11.0.1 with a Lenovo
Thinkpad with an Intel(R) Core(TM) i7-6700HQ CPU @ 2.600GHz 2.6 GHz and 16GB
RAM CORE i7.

Fig. 5: Integrality GAP after 300 sec.

Fig. 6: Increase of ratio A:B

Figure 5 compares the average integrality GAP
after solving for 300 seconds between variant A and
B. GUROBI cannot find a solution for variant A
for instances larger than 7 weeks. Variant B outper-
forms variant A, since GUROBI finds a solution with
a smaller integrality GAP for all instance classes.
When comparing the variants, the difference in in-
tegrality gap can be declared by the strong increase
in number of constraints and variables as shown in
Figure 6.

4 Conclusion and Further steps

Our contribution is two-fold: first, we introduced a
MILP formulation of the underexposed HSP, and sec-
ond, we analysed its computational performance under various constraint formulations.
Our results show an improved computational performance when modelling desk time
assignment as an inventory balance equation.

However, improvement of the modelling approach is still possible since the generated
schedule shows an imbalanced spread over time in the hearing blocks scheduled per type.
Therefore, our current steps focus on generating a schedule in which blocks are spread
over the horizon. This is done by extending the objective with a secondary objective
function incorporating a spread measurement. In our presentation, we will provide the
MILP formulation more extensively and discuss the preliminary results of our next steps.
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1 Introduction

For decades, sports timetabling has been a case-study driven field, with researchers
developing tailor-made algorithms. The value of these case studies notwithstanding,
the lack of a framework for algorithm benchmarking made it difficult to compare
timetable requirements and algorithm performance across different studies. With the
recent introduction of RobinX [4] and the International Timetabling Competition 2021
(ITC2021, [2]), a unified file format and a set of common benchmark instances is now
available. Even though ITC2021 has paved the way for more generic algorithms it also
indicates that, depending on the specifics of the sports tournament, some types of algo-
rithms may be more suitable than others. This extended abstract is based on Van Bulck
et al. [3] and demonstrates how to use techniques from instance space analysis to predict
which algorithm is most suited for a given sports timetabling application. Our results
are based on large computational experiments involving about 50 years of CPU time on
more than 500 newly generated problem instances.

2 The International Timetabling Competition 2021

The task in ITC2021 is to construct a compact timetable for a double round-robin
tournament, meaning that each team faces every opponent twice, both at home and
away, with exactly one game per round. Constraints are categorized as hard or soft:
hard ones are fundamental and cannot be broken, while soft ones are preferences. The
objective is to respect as many soft constraints as possible, while adhering to all hard
constraints. Nine constraint types are considered, grouped into four classes (see also [4]).

Capacity constraints regulate when teams play at home or away. We consider four
types: CA1, CA2, CA3, and CA4.

Break constraints regulate the number of breaks (i.e., consecutive home or consecutive
away games) in the timetable. We consider two types: BR1 and BR2.

Game constraints enforce or forbid specific assignments of games to rounds. We con-
sider only one type: GA1.
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Fairness and separation constraints are always soft and only two types are consid-
ered. FA1 limits the maximal difference in home games played by any two teams at
any point in the season, whereas SE1 requests a minimal number of rounds between
games with the same opponents.

In addition, some problem instances require a ‘phased’ timetable, meaning that each
team plays against every other team once before any rematch takes place. ITC2021
offers a set of 45 problem instances, which are all expressed in the standard file format
of RobinX. The number of teams varies from 16 to 20. Instances and best solutions are
available from the competition website at itc2021.ugent.be.

3 A Problem Type Analysis for ITC2021

Since the set of 45 problem instances from ITC2021 is rather limited to apply machine
learning tools, we used the generator from [2] resulting in a diverse set of 518 additional
instances. This was done in such a way that the instances are well scattered in the so-
called two-dimensional (2D) problem type space (see Figure 1a). The axes of this 2D
space correspond to linear combinations of the number and type of constraints (i.e., the
problem type) present in each instance, combined in such a way that the performance of
the algorithms linearly varies over the 2D space.

In order to get more insights into the composition of the problem type space,
Figure 1 also shows the distribution of some prominent constraint types over the space.
Besides, Figure 2 visualizes the regions where some of the algorithms we consider are
expected to perform well. Goal and UoS are matheuristics (fix-and-optimize and variable
neighborhood descent), FBHS shares similarities with the well-known first-break-then-
schedule decomposition method, and Udine is a simulated annealing metaheuristic. For
more details, see Van Bulck et al. [3].

Comparing the distribution of the problem type characteristics (cf., Figure 1) with the
algorithm footprints (cf., Figure 2), we derive the following insights. First, the footprint
of Udine shows that the algorithm not only finds a feasible solution for the majority of the
problem instances, but also that the solutions found are of high quality. However, near the
top of the instance space where there are many BR2 soft constraints, FBHS seems more
promising. Finally, for instances near the middle-left to bottom-right diagonal, Goal and
UoS are a suitable choice. As none of the problem type characteristics dominate in this
region, these instances could be considered as ‘average instances’. On the other hand,
all algorithms struggle to find feasible solutions near the bottom of the space where the
‘hardest instances’ from our dataset are located. This part of the problem type space
corresponds to problems that are phased or have SE1 soft constraints, in combination
with many BR2 and CA4 hard constraints. On the other hand, near the middle of the
space, and especially near the middle left, there are several instances for which multiple
or even all algorithms find a good solution. Based on Figure 1, this area is characterized
by the lack of BR2 hard and soft constraints.

Finally, we note that we can also use the coordinates of the problem instances in
the 2D problem-type space as input to a machine learning model to predict which
algorithm is expected to perform best. The results of these predictions, made with the

itc2021.ugent.be


314 Van Bulck, Goossens

(a) Problem type space (b) CA4 Hard

(c) BR2 Hard (d) BR2 Soft

(e) SE1 Soft (f) Phased

Fig. 1: Distribution of the number of constraints for some prominent constraint types
over the so-called problem type space constructed with the ISA toolkit [10]. In (a), blue
triangles denote the 45 original ITC2021 instances, whereas grey dots denote the 518
additional instances.
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(a) Udine (b) FBHS

(c) Goal (d) UoS

Fig. 2: Algorithm footprints illustrating regions where the algorithm is expected to
excel (blue regions, as identified by the ISA-toolkit [10]). Colours denote the relative
gap compared to the best solution found by any of the algorithms, with red x-marks
indicating instances for which no feasible solution was found.
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ISA toolkit [10], and the quality of the predictions in terms of the average relative
gap with regard to the best solution found by any of the algorithms can be found in
Figure 3. Using the recommended algorithm for each instance, we are able to reduce
the average relative gap for the Udine solver (the single-best algorithm) from 12.8%
to just 4.93% (measured over a set of unseen test instances; always predicting the best
algorithm results in a gap of 0%). This lets us conclude that we are able to effectively
predict which algorithm a practitioner should use, when given the type of constraints
typically present in the sports competition under consideration.

(a) Recommendations (b) Performance

Fig. 3: Algorithm recommendations by the ISA toolkit [1] and performance thereof
using as features the 2D coordinates in the problem type space. UoS was never predicted
to be best.
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Abstract. This extended abstract article describes the impact of the COVID-
19 health restrictions in the teaching activities at the HEIG-VD university in
Switzerland and the way that teaching activities could be maintained by using
a custom timetabling algorithm incorporating the necessary social distancing
health measures. The modified algorithm, using a mixed-integer program model,
produced a new timetable and at the same time automatically selected the optimal
mode of delivery for each lecture: remotely by video conference or physically
in the classroom. The optimization model ensured that physical contact among
students was minimized, while at the same time guaranteed that the courses or
laboratories requiring physical presence were still able to take place.

Keywords: Educational timetabling, mixed integer programming.

1 Introduction

University timetabling is a well-studied optimization problem in the academic literature
[3,12,6,5,9] and a large volume of research has looked at every aspect of academic
timetable production. The COVID-19 health crisis added new challenges in timetable
construction, one of which is presented here.

The onset of the COVID-19 crisis had an impact on all aspects of life where social
interaction is required, including education. In particular, during the spring of 2020,
schools and universities in Switzerland, including ours, were obliged to restrict the
use of classrooms and lectures were delivered online using videoconferencing. The
only exceptions were a limited number of classes requiring specialized equipment or
laboratories as well as the final exams, which were allowed to take place in the classrooms
with protective measures.

The planning for the following academic year 2020–21 was subject to a number
of COVID-19 social distancing restrictions, which are summarized as follows: (i) any
lectures requiring specialized equipment or laboratories must take place physically at
the university buildings, (ii) the remaining lectures may be given either online or at
the university, and (iii) students can only be physically present at the university for a
maximum of three days a week. The idea was to allow students at the university for
a limited number of days, whilst optimizing the mode of delivery of each course. To
implement this, each lecture was assigned a weight, ranging from 3 for a lecture which
must be given in the classroom, 2 for a lecture ideally given in a classroom and 1 for
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lectures best suited for online lecturing. Some courses could have lectures of two types,
for example, for Physics the practical experiments (one lecture a week) required physical
presence, whereas the theoretical lectures (twice a week) could be given online.

The requirements created a challenging timetabling problem. We had to place the
lectures which must take place in the classroom during a maximum of three days a week
for each student (noting that some courses are shared between diplomas or orientations,
so these three days can be different for each student) while filling in the gaps in the
timetable using other courses which can be delivered in either mode. Conversely, all
courses planned during the two days (at a minimum) during which a student is not at
the university must take place online.

Note that the mode of teaching for each course must be the same for all students
who follow it, so it is not possible for the same lecture to be “in the classroom” for some
students and “online” for others. However, we assigned rooms to online lectures also:
these rooms were used by students as a space to connect to an online lecture if they
had to be at the premises for other lectures, and also in case the health measures were
abandoned, enabling a return to classrooms.

At the same time the student population had to be assigned by the algorithm to
the different parallel classes, since most courses are given multiple times (up to eight
times) in order to ensure that classes contain no more than 25 to 30 students. Students
are assigned to parallel classes each semester at the time of creation of the timetable.
Furthermore, the usual quality constraints had to be maintained: avoid having gaps in
the student timetables, distribute lecture of the same course over a number of days and
so on.

If we consider the recent literature, it is clear that we were not the only univer-
sity facing such challenges. Various COVID-19 timetabling challenges are studied in
[1,8,13,4,2,7] although in many cases the size of the timetable considered is much
smaller that the problem described here.

2 Mathematical modeling

The timetable for undergraduate engineering degrees at the HEIG-VD university is
produced with an in-house software which models the timetabling problem as a mixed-
integer program, similar to [10]. In particular this model calculates three elements,
modeled as binary 0-1 decision variables: the start time of each class, the rooms allocated
for each class and the assignment of classes to each student.

In order to model the COVID-19 requirements we introduced a fourth element to
be calculated by the optimization model: a variable ⇡; , shared by all students, denoting
whether the class takes place in the classroom or via videoconferencing. For every
lecture ; to be placed on the timetable:

⇡; =
⇢

1 if the lecture ; takes place via videoconference (online),
0 if the lecture ; takes place in a university classroom.

With regards to the additional constraints imposed on the student timetable, an additional
variable per student and per day was added, denoting if a student is entirely online that
day (all his courses on that particular day are “via videoconferencing”) and therefore not
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present in any university building, or not (at least one course he has to follow takes place
in a classroom). This is modeled as follows: for every student B and day 9 we define:

+B 9 =
⇢

1 if all the lectures followed by student B during the day 9 are online,
0 if at least one lecture followed by B takes place at the university.

The addition of these two types of decision variables allowed us to formulate all the
necessary COVID-19 timetabling constraints and define the additional terms of the
objective function. It is possible for a student to have lectures given in a classroom and
online on the same day. In those cases the room assigned to the online lecture could be
used by students (and sometimes lecturers) as a space to connect to the lecture online if
desired.

The implementation was done by adding the additional variables and constraints to
the existing timetabling mixed-integer programming model used by the university, which
already includes over 40 types of timetabling constraints and solved with a two-stage
algorithm very similar to [11]. The software is programmed in C++ using a commercial
version of Cplex as the mixed-integer programming solver and typically takes several
days to solve due to the sequential addition of the constraints and the need to remove
some default constraints for some courses when infeasibility occurs.

The addition of the COVID-19 constraints did not have a big impact on the overall
complexity or time needed to produce a solution of acceptable quality, however the final
timetable produced placed lectures at very different locations to our standard timetable
without any COVID-19 constraints. The characteristics of the timetabling problem are
shown in Table 1. The number of courses denotes the total number of times the same
subject is given (parallel courses), each student class is assigned to only one course for
each subject it follows. The number of lectures is the number of events to be scheduled
each week.

Table 1: Characteristics of the timetabling problem.
Number of students 962 (405 classes)
Number of different subjects 239
Number of different courses 377
Number of lectures (lessons) per week 709
Number of teaching staff 200
Number of rooms 87
Number of time slots 10 per day ⇥ 5 days
Duration of each lecture 2, 3 or 4 slots
Average size of each lecture 18.6 students

The results of this approach were very positive. Thanks to our ability to develop this
mixed-integer timetabling model during the summer of 2020, we were able to construct
a timetable for 2020–21 which reduced the number of students present at the university
by 40% from an average of 840.6 students to 501.4 students present per day (Table 2).
At the same time, we were able to place at least one lecture per week of every subject
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during the three days the students were present, a positive outcome, ensuring that contact
between students and teachers was maintained, and activities such as tests could take
place in the classroom during the semester.

Table 2: Number of students present and courses taking place in university buildings
Usual timetable Mon Tue Wed Thu Fri
Students physically present: 893 894 798 874 744 840.6 (average)
Lectures held in classrooms: 158 157 144 152 98 709 (total)
Modified Covid timetable Mon Tue Wed Thu Fri
Students physically present: 636 513 465 661 232 501.4 (average)
Lectures held in classrooms: 107 88 80 111 38 424 (total)

3 Conclusion

This paper presented the work carried out during the height of the COVID-19 crisis
at the HEIG-VD university in Switzerland to guarantee the best teaching outcomes
for the undergraduate engineering courses. Using a modification of the actual mixed-
integer programming timetabling model we were able to incorporate the necessary social
distancing health restrictions. This produced a timetable for the 2020–21 academic year
which took into account the requirement to limit the number of days the students are
present at the university buildings, while at the same time guaranteeing that courses
requiring specialized laboratory equipment were able to take place in person.
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Abstract. In a world where the wellbeing of drivers is, quite rightly, receiving
more attention, algorithms that can efficiently create schedules that comply with
the regulations are becoming increasingly important. This extended abstract in-
vestigates how to schedule long-distance truck drivers in accordance with the
European Union’s Hours-of-Service regulations. We introduce a vehicle routing
algorithm that takes into account both the working hours of drivers and time
windows of customers. The heuristic algorithm outperforms the current state-of-
the-art approach for a public data set.

Keywords: Truck Driver Scheduling Problem, Hours-of-Service regulations, Ve-
hicle scheduling

1 Introduction

In recent years, there has been an increased focus on employee wellbeing. This is
particularly relevant for truck drivers, who are often on the road for long periods of
time. The European Union has imposed regulations to ensure the safety and wellbeing
of such drivers, namely (EC) No. 561/2006. These regulations are also important for
drivers’ employers, who risk significant penalties if their drivers are not compliant. Goel
and Vidal [3] highlighted the fact that adopting hours-of-service regulations can more
than double the total travel duration. It is therefore crucial for companies to carefully
optimize the routes of their drivers.

The truck driver scheduling problem (TDSP), introduced by Goel [2], aims at cre-
ating schedules that comply with the aforementioned European Union regulations. En-
suring compliant schedules represents a crucial component of the Vehicle Routing and
Truck Driver Scheduling Problem (VRTDSP), where the goal is to find routes for the
trucks and schedules for the drivers that minimize both the total distance traveled and
the number of drivers.

2 Problem description

A solution of the TDSP, consists of a sequence of distinct activities, that describe what
a driver is doing at certain points in time: service, driving, break and rest. Feasible
schedules must comply with a number of constraints:
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– The driver must carry out a service activity at each customer location, the execution
of which is restricted by a time window.

– The time it takes to travel between two customers is equal to the total driving time,
which may be interrupted by breaks or rests.

– Compliance with the European Union regulations, namely:
• A driver must take a break of at least 45 minutes if they have driven for 4.5

hours since the end of their last break or rest period.
• A driver must take a rest of at least 11 hours if they have driven for 9 hours

since the end of their last rest period.
• A driver must rest for at least 11 hours within 24 hours of the end of their last

rest period.

3 Proposed algorithm

Our truck driver scheduling algorithm is based on the multilabel method introduced by
Goel [2]. Compared to the original method, we have made several modifications, such
as (1) an improved labeling strategy that finds a higher number of feasible schedules
and (2) an effective pruning strategy that reduces the number of schedules that have to
be checked for feasibility. The vehicle routing component of the problem is solved by
the SISRs algorithm introduced by Christiaens and Vanden Berghe [1]. SISRs suggests
routes for the drivers and our algorithm determines whether an EU-compliant schedule
can be generated for these routes.

4 Preliminary results

The performance of the proposed algorithm is evaluated using the VRTDSP instances
introduced by Goel [2]. These instances are based on the Vehicle Routing Problem with
Time Windows instances of Solomon [4] and modified for the VRTDSP. The instances
are divided into three geographical layouts: random (R), clustered (C) and random-
clustered (RC). Each geographical layout consists of two types of instances: type 1 and
type 2 (e.g. R1 & R2). Type 2 instances have a higher vehicle capacity and longer time
windows compared to type 1 instances.

We compare our results against the Hybrid Genetic Search with Adaptive Diversity
Control (HGSADC) algorithm proposed by Goel and Vidal [3], which is currently the
best performing heuristic algorithm for the VRTDSP. Given that our algorithm does
not consider split breaks, split rests or extended driving times, the results are compared
against the "No split" version of HGSADC. Similar to Goel and Vidal [3], we solve the
problem in accordance with a hierarchical objective, where minimizing the number of
drivers is prioritized over minimizing the total distance traveled. Note that the number
of drivers determines the fleet size. Also note that the results for HGSADC are directly
taken from the original paper and thus there is a difference in the hardware used for the
experiments.

The results in Table 1 are presented in terms of the average and fewest number of
drivers in addition to the average and shortest total distance traveled. Column TAvg.
details the average execution time of our algorithm in seconds, averaged over five runs
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per instance. The algorithm ran for 50000 iterations, with 10% of the iterations in the
fleet minimization phase. A time limit of 1 hour was set, again with a maximum of 10%
of the time spent in the fleet minimization phase.

The algorithm was implemented in Rust (1.78.0). All our experiments were con-
ducted on a computer with an AMD Ryzen 7 5800X processor at 3.8 GHz with 8 cores,
32GB of RAM and Windows 10 operating system.

Table 1: Results for the Goel [2] instances
Our algorithm HGSADC [3]

Avg. Fleet Avg. Dist. Best Fleet Best Dist. TAvg. Avg. Fleet Avg. Dist. Best Fleet Best Dist. TAvg.
R1 98.60 11 860.77 98.00 11 810.67 7.09 98.80 11 769.13 98.00 11 835.89 –
R2 55.00 10 807.90 54.00 10 694.42 27.90 62.60 10 294.36 62.00 10 279.25 –
C1 90.00 7618.23 90.00 7609.33 3.23 90.40 7630.25 90.00 7628.73 –
C2 35.00 5486.92 35.00 5440.08 15.56 40.00 5754.04 40.00 5753.30 –
RC1 72.00 9101.35 72.00 8918.92 5.84 72.00 8915.07 72.00 8892.74 –
RC2 47.00 9204.53 45.00 9220.92 12.78 50.00 8960.99 50.00 8917.25 –
All 397.60 54079.70 394.00 53694.33 12.40 413.80 53323.84 412.00 53307.16 3240

The first observation we can make from from Table 1 is that our algorithm performs
well when considering the primary objective: minimizing the number of drivers required,
especially for the type 2 instances. Moreover, despite the reduction concerning the
number of drivers, the total distance traveled remains close to the values produced by
the HGSADC algorithm. Finally, it is also worth observing the significant variation
concerning average execution time between type 1 and 2 instances.

By the time of our presentation at PATAT, we will present results regarding the
completeness of our algorithm. Put another way: what percentage of feasible schedules
does the algorithm determine to be feasible. We also aim to gain further insight into the
results by investigating the difference in difficulty between the type 1 and 2 instances.

This research was supported by KU Leuven IOF (C2E/23/012: Human-centred decision
support based on a new theory for personnel rostering).
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Scheduling airline operations is a very challenging and demanding task situated in a
competitive market with high operational cost and strong regulations [3]. The scheduling
process is typically divided into multiple steps due to the overall complexity, which are
the flight scheduling problem (FSP), the fleet assignment problem (FAP), the aircraft
maintenance routing problem (AMRP), and finally the crew scheduling problem (CSP).

This line of work deals with the AMRP, where the flight legs and the type of
aircraft to fly these legs are already fixed, but the specific aircraft (usually identified
by its tail number) still needs to be assigned. Since aircraft need a range of different
maintenance operations that depend both on the sequence of flights and their location,
the assignment of flight legs and maintenance operations is typically combined in the
Aircraft Maintenance Routing Problem. There are some recent reviews dealing with this
problem [8,9], and a large body of work exists, going back to early work with reduced
problem formulations [4]. Capacity constraints were rarely considered, or only with
upper limits [3]. Solution methods include heuristic techniques [5], network-based MIP
formulations [6,3], and branch-and-price techniques [7]. Heuristic approaches often
outperform exact approaches on instances of realistic scale [1,2].

However, as already highlighted by Eltoukhy et al. [3] regarding future research
directions, the AMRP rarely includes more considerations on how the maintenance
workers are utilised. However, this can have very negative effects on the workforce,
leading to both times with very high peak workloads, creating stress and fatigue, while
other times are underutilised, leading to excess costs. Therefore, one major contribution
of this work is to propose a maintenance distribution objective that aims to evenly
distribute maintenance work or can also be easily adapted to other given maintenance
target distributions.

Problem Definition We work on a version of the problem where the routing aspect is
in the background since there is only one major hub that does the maintenance for all
aircraft. Therefore, outgoing and consecutive incoming flight legs are combined, and
each resulting (longer) flight leg starts and ends at the same hub. However, we want to
extend our problem variant with maintenance distribution to multi-hub problems in the
future.
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A set of = flight legs ) = {C1, . . . , C=} is given, each leg 8 is associated with a start
time B8 , an end time 48 , and flight time 58 .

Note that there are different ways to specify aircraft maintenance tasks, often in the
notion of checks of type A, B, C, and D. This version of the problem uses a different
notion, but the general ideas are independent of the specific requirements. Each aircraft
needs the following three types of maintenance:

– Routine: The aircraft can fly for at most 47 hours after the end of the previous routine
maintenance, then it needs routine maintenance taking 2.5 hours before taking off
again.

– Weekly: The aircraft can fly for at most 156 hours after the end of the previous
weekly maintenance, then it needs weekly maintenance taking 7 hours before taking
off again. Weekly includes routine maintenance.

– Major: There are four different types of major maintenance. Each of them is inde-
pendent from the others. Each follows the same rule regarding time: After at most
950 hours of cumulative flight time since the last maintenance of the same type,
the aircraft needs major maintenance taking 14 hours before taking off again. Each
type of major maintenance includes routine and weekly maintenance. Further, the
types MH1 and MH2 require the hangar, meaning that only 1 aircraft can perform any
of these two types of maintenance at once.

A set of < aircraft � = {01, . . . , 0<} is given, each aircraft 9 is associated with history
regarding the last flight leg and last maintenance tasks.

A feasible solution assigns all flight legs to available aircraft, and the required types
of maintenance to specific time intervals, such that:

– The flight history is respected.
– No overlapping legs and tasks are assigned to any aircraft.
– No maintenance intervals are violated.
– At most 1 aircraft is assigned MH1 or MH2 at any point in time.

For optimisation, the total number of aircraft in any type of maintenance <: is calcu-
lated for each minute : in the planning period, and

Õ
:
<

2
:

is minimised. This optimises
the distribution of maintenance tasks (since peaks are penalised more), and also the
total amount of maintenance (leading to maximisation of the available intervals be-
tween maintenance tasks). In addition, for each major maintenance the difference to the
maximum flight time is added to prevent the maintenance from being done too soon.

Instance Generator One of the issues in the area of aircraft scheduling is that typically
instance data is not publicly available, since airlines do not want to reveal details about
their operation. However, this creates a difficult situation for scientific comparison, as
this makes a thorough comparison of different methods very difficult, if not impossible.

Therefore, while we can also not share real-life data, we developed a flexible instance
generator for these kinds of problems with several features to recreate characteristics of
real-world instances:

– Instance size: Configurable number of aircraft, time horizon, granularity of flight
times, and length of flight legs.
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Fig. 1: Solution visualization: Aircraft on top, combined maintenance below

– Density: The density of the instances can be configured in several ways. A density
of 1 represents a schedule where there is no idle time of aircraft besides flight legs
and maintenance, leading to instances where it is difficult to find a feasible solution.
Lower density leads to instances with more idle time where it might be easier to
find feasible solutions, therefore, more emphasis can be put on the ideal distribution
of maintenance. There are also options for up- or down-sloping density during the
planning horizon.

– Peak behaviour: In real life, there are demand peaks during the day, e.g., for long
distance flights many of them might start around 10 to 11 am. Peak intensity can
therefore be chosen using parameters.

Instances are generated around a feasible, but most likely not optimal solution. We
will further extend the generator to allow the generation of instances with different
maintenance requirements. The current state of the generator as well as the new set of
benchmark instances are available online3.

Solution Methods We provide a model in the constraint modeling language MiniZinc
for this problem. The decision variable 0BB86=<4=C8 shows the aircraft to which each leg
8 is assigned to. As there is at most one of each type of major maintenance per scheduling
horizon, the major maintenance tasks are captured with a decision variable that denotes
the start time per type for 9 2 �. Given that routine and weekly maintenance tasks can
happen multiple times, the start times for these tasks are presented with optional decision
variables. Additionally, we use the disjunctive constraint to ensure that no overlapping
flights are assigned to any aircraft or tasks to the hangar at any given point in time.

3https://cdlab-artis.dbai.tuwien.ac.at/papers/amr-md/

https://cdlab-artis.dbai.tuwien.ac.at/papers/amr-md/
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We have also been working on a solution method using Simulated Annealing, where
moves either reassign flight legs to different aircraft, or change the location of a main-
tenance task within an aircraft.

Preliminary Results We created a new set of benchmark instances ranging from 10
aircraft for one week up to 50 aircraft for a month with various density and peak
options. First results indicate MiniZinc together with the solver OR-Tools can solve
small instances in short time, and good results can be obtained with Simulated Annealing
for larger instances. Compared to pure maintenance assignments (as late as possible),
peaks can be reduced significantly while keeping the same quality of aircraft schedules,
showing the usefulness of our extension.
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1 Introduction

Inspired by the Constraint Programming (CP) regular constraint [8], [3] proposed
a similar approach in a Mixed Integer Programming (MIP) context: a MIP regular
formulation. Their method proved its efficiency to solve several Personnel Scheduling
Problems (PSP) [3,7]. The main idea is to consider employee’s schedules as words of
formal languages to encode a subset of working regulations. Flow formulations in the
network structures of these languages can be derived and possibly combined with a
classical MIP formulation to entirely model a PSP. In such a formal language, words
have a fixed length = equal to the number of time periods in the planning horizon and
can be represented by Finite Automata with =+1 levels (hereinafter denoted as =-FA) in
which each accepting path represents a valid schedule between the first and the last level.
The number of decision variables in the resulting network flow formulation corresponds
to the number of transitions in the =-FAs.

When each word in the language has exactly one accepting path, we say that an =-FA
is unambiguous. Note that deterministic automata (i.e., there is at most one transition
per symbol for a given state) are unambiguous by definition. This characteristic allows to
break possible symmetries in the mathematical programming formulation of the prob-
lem. Therefore, to efficiently obtain small and asymmetric MIP regular formulations
for PSPs, we are interested in computing an unambiguous =-FA representing a given
set of working regulations and with as few transitions as possible. This task faces three
main challenges. First, =-FA minimization is NP-hard [1], and our aim is to develop a
procedure performed in a negligible amount of time when compared to MIP solving
time. Second, unambiguity is not guaranteed in a FA by usual minimization procedures.
Third, existing works in the literature mainly focus on reducing the number of states in
the automata, while we are more interested in reducing the number of transitions which
in turn limits the number of variables in the final MIP formulations.
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2 Reduction Approach

[6] describes a procedure to obtain deterministic (hence unambiguous) =-FAs represent-
ing a set of given PSP working regulations. We now seek to reduce the size of such
automata. The classical minimization of deterministic =-FAs [5] is performed in linear
time and is optimal in terms of both state and transition reduction. Although this obvi-
ous approach answers the three challenging points previously discussed in an efficient
manner, nondeterministic =-FAs allow for an even more compact representation. In par-
ticular, [1] generalize Nerode’s equivalence to derive an =-FA state reduction heuristic
as a sequence of level minimization. This procedure allows to maintain unambiguity
during the reduction and we observe short enough computation times when we test it on
practical PSPs =-FAs. We propose to adapt this procedure for transition reduction.

Extending the results presented in [1], we show that minimizing the number of
transitions entering and exiting a single level of an unambiguous =-FA is equivalent to
solving an NP-hard problem that we call Weighted Vertices Biclique Decomposition
Problem (WVBDP). Given a bipartite graph ⌫, a biclique decomposition [2] of ⌫ is a
set of bicliques (i.e., complete bipartite sub-graphs) whose respective edges partition
⌫’s edges. Given a positive weight function over ⌫’s vertices, we define the WVBDP
as the computation of a biclique decomposition of ⌫ with minimum total weight (i.e.,
the sum of the weights of the vertices of each biclique). Our reduction procedure is
therefore a succession of such level reductions (see [1] for more details) where each step
is equivalent to solve a WVBDP.

The direct MIP formulation of the WVBDP that we propose fails to solve the
intermediate steps of our procedure on practical MIP regular =-FAs in a reasonable
amount of time. Therefore, we develop a heuristic to quickly obtain good approximate
solutions for large problems. We build bicliques by starting from single uncovered edges
and successively add vertices under some conditions. We define regret(E, 2) as the
regret of adding a vertex E to the open (i.e. currently being built) biclique 2 rather than
to the trivial biclique composed of E and its neighborhood. A biclique 2 is considered
closed when no vertex E have regret(E, 2)  0 and open bicliques are extended with
the vertex with smallest regret value. We establish some properties of our algorithm
guaranteeing the convergence of the =-FA transition reduction procedure. The heuristic
allows to obtain solutions close to the optimal on random WVBDP instances with small
bipartite graphs. Section 3 shows an insight of the performance of the heuristic when
used as an intermediate step in the =-FA reduction, which transfers in larger WVBDPs.

3 Numerical Experiments

We test our approach on instances for the Nurse Rostering Problem (NRP) presented
in [4]. These instances represent a planning period of 4 weeks in 9 different hospi-
tal services. We model five types of working regulations (forward rotation, minimum
and maximum consecutive working shifts, minimum consecutive days-off, maximum
number of weekends and fixed days-off) as MIP regular constraints, while additional
constraints are integrated as classical linear inequalities, as presented in [4]. We compute
automata in Python3 and solve optimization problems with a time limit of one hour with
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the version 22.1.1 of CPLEX on one thread of a CPU Intel Xeon e5-2630-v4 from the
CCIPL cluster (https://ccipl.univ-nantes.fr/).

Table 1 shows, for each service, the total number of states and transitions in all
unambiguous =-FAs (one by employee) obtained with three different reduction proce-
dures: a classical deterministic minimization [5] (DeterMin), the Nerode’s equivalence
generalization for state reduction [1] (StateRed), and our adaptation of [1] for tran-
sition reduction using the proposed regret heuristic as intermediate step (TransRed).
Non-deterministic =-FAs allow a more compact representation of the language and our
procedure results in a significant reduction in the number of transitions at the expense of
a (mild) increase in the number of states when compared to the state reduction procedure.

Service DeterMin StateRed TransRed
#w #s #states #trans time #states #trans time #states #trans time
10 2 3155 6322 0.48 2972 6175 1.01 3027 5601 2.34
16 2 4726 9069 0.58 4450 8856 1.26 4553 8085 2.87
18 3 6691 15287 1.03 6324 14994 1.97 6404 13144 6.29
20 3 7679 18290 1.30 7250 18009 1.73 7465 15905 5.89
30 4 12897 32978 1.91 12155 32424 3.39 12390 27814 11.0
36 4 15798 44473 2.98 15290 44087 4.33 15461 36957 14.7
40 5 18754 53676 3.37 17461 52728 5.14 17924 44500 16.6
50 6 22196 74041 4.20 20653 72973 6.65 21369 61935 15.7
60 10 32693 149246 8.37 30383 147820 13.8 31676 122263 31.1

Table 1: Total number of states (#states) and transitions (#trans) for each instance: #w
and #s are the number of nurses and shift types in the hospital service, computation time
is indicated in seconds.

For each instance, we create 30 additional ones with the same working regulations
and minor variations in the demand, vacation, or preferences to represent new planning
periods in the same hospital service. Table 2 compares the solving performances for
three MIP formulations: the classical model presented in [4], a MIP regular formu-
lation with minimal deterministic =-FAs (DeterMin MIP regular) and the same MIP
regular formulation using =-FAs reduced with TransRed (TransRed MIP regular).
We observe that MIP regular formulations are generally more efficient when com-
pared to a classical MIP formulation. Also, by comparing DeterMin MIP regular
and TransRed MIP regular, the results show how the proposed unambiguous =-FA
transition reduction leads to better MIP solving performances.

4 Conclusion

We propose a procedure for reducing the number of transitions in unambiguous =-FAs.
This procedure is adapted from an existing =-FA state reduction approach and requires
to solve a WVBDP as an intermediate step. The WVBDP is an NP-hard problem for
which we present a regret heuristic in order to quickly find good solutions and therefore

https://ccipl.univ-nantes.fr/
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Service Compact Assignment DeterMin MIP regular TransRed MIP regular
#w #s #sol(gap) #opt(time) #sol(gap) #opt(time) #sol(gap) #opt(time)
10 2 30(<1) 29(93.44) 30(<1) 30(12.49) 30(<1) 30(12.08)
16 2 30(1.2 ) 25(615.1) 30(<1) 30(91.60) 30(<1) 30(67.41)
18 3 30(<1 ) 24(945.6) 30(<1) 30(137.8) 30(<1) 30(169.4)
20 3 30(5.6) 10(987.6) 30(<1) 30(289.3) 30(<1) 30(207.0)
30 4 30(16) 0(—–) 30(4.2) 0(—–) 30(3.2) 1(1791)
36 4 28(9.9) 11(262.9) 19(28) 6(1459) 27(23) 8(745.1)
40 5 30(2.7) 19(960.5) 30(<1) 30(231.5) 30(<1) 30(133.1)
50 6 30(<1 ) 29(309.8) 30(<1) 30(757.0) 30(<1) 30(600.3)
60 10 16(18) 3(1503) 3(<1) 3(1840) 6(<1) 5(1508)

Table 2: Solving performances: #sol(gap) = =(G) indicates = integer solutions with a
mean optimality gap of G %, #opt(time) = =(G) indicates = optimal solutions with a mean
solving time of G seconds (including MIP regular =-FAs reduction).

be able to use our =-FA transition reduction to improve MIP regular formulations for
practical PSPs.

Results on an NRP show that our approach efficiently reduces the number of tran-
sitions in the MIP regular =-FAs, which leads to mathematical models with less
variables. This globally translates into better MIP solving performances when using this
type of reduction rather than a classical deterministic minimization approach.
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1 Introduction and problem description

The Intersection Traffic Signal Control Problem (ITSCP) [5] serves as a model for
optimizing traffic signaling in urban areas. Broadly, ITSCP comprises three primary
components: the cycle, representing the overall time for a signalization period; the
phase sequence, indicating the order of allocation of green time for individual incoming
streets at the intersection; and the green time duration, encapsulating the total timings for
a specific phase (i.e., incomming street), during which signaling remains constant [11].
In this extended abstract, we focus on a variant of ITSCP as defined in the Google Hash
Code Competition [9], a competition that has been held annually from 2014 to 2022
[9]. This variant is characterized by a general network type that considers single vehicle
types with a fixed scheduling strategy employing an offline scheduling mechanism.
Additionally, the objective function aims to minimize delay for all vehicles, with no
constraints imposed on cycle length, order of phase sequence, or green timing length
for individual phases.

In summary, the problem revolves around intersections, streets, and cars, with in-
tersections having at least one incoming and one outgoing street, streets connecting
intersections without intersecting each other, and cars following predefined paths of
streets, passing through each intersection at most once. Several hard constraints apply:
green time is assigned to incoming streets one at a time, forming a repeating cycle until
the simulation ends; cars wait at red signals and move through green signals, with only
one car able to pass through an intersection per second during the green phase; the traffic
light schedule determines the order and duration of green lights for incoming streets,
ensuring each street appears at most once; all streets are one-way, preventing duplicate
connections between intersections in the same direction; and cars start at the end of
initial streets, adhering to traffic signals to reach their final destinations. The objective
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is to optimize traffic signal control, where each car earns points based on completing
its route before the simulation ends, with a fixed reward for completion and additional
points for early completion, and the overall solution score is the sum of all cars’ scores.
For a detailed problem description, please refer to the Traffic Signaling Problem in [9].

2 Solution approach

Our approach to solving the problem involves two main methods: one utilizes single-
state metaheuristic techniques, specifically Iterated Local Search (ILS) [7], while the
other employs population-based techniques, specifically a variant of the Evolutionary
Algorithm (EA) introduced by Pham and Castellani [8]. ILS is well-known for its ability
to avoid getting stuck in local optimal solutions, and it is also praised for being fast and
memory-efficient, which has made it successful in solving various scheduling problems
in transportation, such as last-mile routing [2] and the colored traveling salesman prob-
lem [12]. On the other hand, EA is known for its ability to escape from local optima,
making it suitable for solving various combinatorial optimization problems [6], such as
wireless sensor networks [1], the team orienteering problem with time windows [3], and
shortest path problems with fuzzy arc weights [4].

A candidate solution of the envisioned ITSCP problem variant is represented by
an array, with its length matching the number of intersections in the given problem.
Within this array, each element is a tuple object containing information about the
phase order and signaling time (green time) for each incoming street at the respective
intersection. The search process always operates within the feasible part of the search
space, where solutions are evaluated using a single objective evaluation function defined
in the respective problem description [9].

Table 1: Implemented neighborhoods
Name Description
ShufflePhases(8) Rearrange the order of phases for the green signal timing for all

incoming streets at intersection 8
SwapPhases(8,B1,B2) Swap the order of phases for the green signal timing for incoming

streets B1 and B2 of intersection 8
ChangeSignaling (8,B) Change the green time for incoming streets B of intersection 8

We have a set of three neighborhoods already implemented, listed in Table 1. In each
iteration, these neighborhoods compete with each other based on specific probabilities
assigned beforehand, which are fine-tuned based on initial experimentation.

3 Preliminary experimental results

We conducted preliminary experiments to evaluate the performance of our ILS and EA
approaches. Both methods were tested against upper bound values (the hypothetical
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scenario where no car ever waits at the traffic lights) and Shporer’s Greedy Constructive
Algorithm (SGCA) [10], which is recognized as a top-performing approach in the
literature.

Our experiments involved 48 instances, including 5 from the original Google Hash
Code competition and 43 newly generated synthetic instances. These instances featured
a variety of intersection, street, and car configurations to provide a comprehensive
assessment.

Our findings indicate that both ILS and EA are competitive with the state-of-the-
art SGCA approach. Notably, our methods achieved new best results for 12 instances.
When comparing ILS and EA, EA outperformed ILS in 26 out of 48 instances, with
superior results by more than 1% in 10 instances. These results demonstrate the potential
effectiveness of our metaheuristic approaches for traffic light scheduling.

4 Future work

The current study represents an initial phase towards achieving a broader final objective.
Initially, we intend to combine EA with ILS to assess the potential for achieving improved
results. Additionally, we plan to integrate heuristic functions to guide the selection of
promising intersections for adjusting the phase order or signaling time. Two potential
heuristic functions we are currently implementing involve selecting intersections based
on either the average length of the queue of waiting cars or the number of cars passing
through them.

Furthermore, we are currently working on generating a new test based on real-life
data acquired from a taxi company in the city of Prishtina, Kosova. This test set will be
used to evaluate the current variant of the algorithm against state-of-the-art solvers.

As a final goal, we aim to extend the current problem definition to a setting suitable
for real-life applications. To demonstrate proof of concept, the extended algorithm
variant will be incorporated into a prototype web system. This system will be capable of
generating traffic light schedules for Prishtina, Kosova, which has 25 intersections with
traffic lights and nearly 300 street lanes connecting them.

Acknowledgements This project is jointly financed by the German Federal Ministry
for Economic Cooperation and Development (BMZ) and the European Union (EU),
#Digital4Business is being implemented by GIZ Kosovo in the framework of the #Dig-
italTransformationCenter in the Innovation and Training Park (ITP) Prizren.
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Abstract. In order to cope with the inconvenience for passengers who need to
take high-speed railway (HSR) due to the HSR stations in China being far away
from the city center, this paper proposes a customized feeder bus (CFB) service for
HSR connection. The research aims to optimize the comprehensive interests of the
government, operators, and passengers, and constructs a mixed integer nonlinear
optimization model that integrates customized bus line planning and timetable
optimization with consideration of travel time uncertainty, and also considers the
passenger assignment problem during the timetable optimization. In addition, the
research also designs a heuristic decomposition algorithm to improve computa-
tion efficiency for solving large-scale cases. Finally, the results of test example
and practical example show that the proposed model has better performance in
reducing costs, passenger travel time deviations, government subsidies and energy
consumption. Besides, it can provide more reliable services to passengers.

Keywords: Customized Bus, Feeder Service, Timetable Optimization, Passenger
Assignment

1 Background

China high-speed railway (HSR) has developed rapidly in the past thirty years. However,
in contrast to the efficiency and convenience of HSR, people generally spend a significant
amount of time reaching and leaving an HSR station, which is primarily because most
HSR stations in China have been built in suburban areas on the edge of cities (Wu and
Han, 2022, Xu et al., 2023). Therefore, HSR feeder services have been brought into
sharp focus to address the first and the last mile problem.

Customized bus (CB) service, as a superior feeder mode, integrates the characteris-
tics of regular bus service with its low price and large capacity, along with the flexibility
of taxi service. CB serves passengers with shared travel patterns fit for ride-sharing
(Huang et al., 2020), which suits HSR passengers who typically plan trips in advance,
ensuring that they reach stations on time. CB provides timely responses to passengers’
needs with its flexibility and a fixed itinerary upon launch, ensuring punctual arrivals at
HSR stations for travelers.
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Research on CB as the HSR feeder mode is limited, highlighting two issues. First,
supply-side models often unrealistically disregard vehicle empty runs, travel time un-
certainty, and vehicle heterogeneity, affecting resource efficiency and service reliability.
Second, passenger behavior models are oversimplified, neglecting how passengers� travel
preferences influence optimization outcomes.

Based on this, this study formulates an integrated optimization model for Customized
Feeder Bus (CFB) services that plans routes and schedules together, considering vehicle
capacity and balancing the interests of operators, the government, and passengers for
enhancing profitability, minimizing subsidies, and increasing satisfaction. It considers
travel time uncertainty to enhance the robustness of CFB services. Moreover, passenger
assignment model is included to refine timetable quality. To address the dispersion of
HSR station passenger flows, this study advocates for hub stations to attract demand,
improve transfer efficiency and boost operational profits.

2 Model and solution algorithm

Our CFB service consists of a set of candidate stops (, a set of routes % that contains all
possible stop combinations and limited available services + provided by vehicles with a
specific capacity. Each operational service will be assigned to a route, and all vehicles
of operational services departing from an HSR station, passing through several stops on
a particular route and final return to the HSR station. Vehicles will stop at intermediate
points for passengers to board and disembark. Because varying traffic conditions on
different routes during different time periods lead to travel time uncertainty, we have set
different additional travel times for each time period based on the expected trip duration
within each interval. That is to say, the actual travel time of the vehicle on the route will
vary according to the different time periods in which it travels. The proposed model
optimizes route design and timetable with consideration of passenger reaction, because
passengers can choose to accept or reject services based on the deviation between the
service timetable and their ideal time. A small example containing an HSR station, a
hub station, five stops and two routes is illustrated in Fig.1.

Fig. 1. An example of CFB service.
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In terms of objective function, we consider minimizing the number of unserved
passengers, the passenger travel time deviation, the government subsidy and the to-
tal electricity consumption and taking their weighted sum to transform into a single
objective function. Therefore, the model can make reasonable decisions to balance pas-
senger demand and economic feasibility, and save energy as well. In order to ensure
that the model result meets the practical condition, we include CFB routing uniqueness
constraint, planning horizon constraint, vehicle headway constraint, minimum boarding
rate constraint, time deviation constraint, and UE condition considering vehicle capacity
constraint.

The introduction of the UE condition leads to the nonlinearity of the model, which
means that it is difficult to calculate by traditional methods in large-scale examples.
Therefore, a decomposition algorithm (DA) is suggested to solve it and the algorithm
flowchart is shown in Fig. 2. We split the original problem into two sub-problems, the
timetable optimization problem and the passenger assignment problem, then solve them
through an iterative process until the deviation of two successive iterations reaches the
lower limit or the number of iterations reaches the upper limit. Specifically, in solving
the passenger assignment problem, the timetable is given, while in solving the timetable
optimization problem, the passenger service choices are given.

Fig.2. Algorithm flowchart
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In addition, considering that a set of routes P could get too large for big instances, in
the large-scale algorithm, we gradually generate a set of paths by adding new routes for
passengers who have not boarded the bus, which means that we do not have to generate
all possible paths at the beginning.

3 Numerical examples
We conducted tests on two examples. In the small-scale example, we have demonstrated
that compared to the benchmark result which used all-stopping services with the uniform
vehicle type, the proposed model with consideration of differentiated capacities and skip-
stop patterns could improve the passenger boarding rate by approximately 8.16%, reduce
the travel time deviation by 30%, decrease the government subsidy by about 1.93%, and
lower energy consumption by roughly 60.09%, as shown in Table 1.

Table 1. Comparison result.

Group U V W X Obj

Control 62 42 5276 131.7 10134.5
Experimental 58 60 5380 330 13430
Results deviation 6.90% -30.00% -1.93% -60.09% -24.54%

(U: Number of boarding passengers, V: Travel time deviation, W: Government subsi-
dies, X: Energy consumption)

Furthermore, considering travel time uncertainty can enhance service reliability and
punctuality, preventing passengers from missing trains.

In the Guangzhounan Railway Station-Guangzhou Higher Education Mega Center
calculation example, the CFB operation plan calculated by our model could reduce travel
time per person, compared with the existing plan.

4 Conclusion
In pursuit of augmenting the convenience and comfort of feeder services for HSR
commuters while improving service reliability with consideration of vehicle travel time
uncertainty, this paper proposes a mathematical model to optimize CFB service. In
order to improve the solution efficiency, we have designed a decomposition algorithm
to iteratively solve the passenger assignment problem and the timetable optimization
problem. The results of numerical examples demonstrate that the proposed model can
effectively reduce costs, better match passenger flow demands, and provide passengers
with more punctual and reliable services.
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Abstract. The EURO conference is the second largest Operations Research (OR)
conference in the world, typically having more than 700 presentations belonging
to one of 70 subject streams and more than 2000 participants. This article briefly
explains how the EURO-2024 was scheduled.
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1 EURO conference planning

The EURO series of conferences is the second largest OR conference in the world,
only dwarfed by the INFORMS (US) conferences. The EURO conferences always take
place in Europe, but are every third year replaced by the IFORS conference. Last year
the IFORS conference took place in Santiago in Chile, hence no EURO conference
2023 was held. In 2024, the EURO conference took place in Copenhagen, 30/6-3/7.
This abstract is on how the conference scheduling was optimized in 2024. A previous
article has already been published on scheduling the EURO conferences, but it has been
substantially improved since 2018, see [1].

1.1 Top level and low level planning

Given the size of the EURO conferences, the centralized scheduling only makes an
overall schedule of the assignment of sessions for streams, to time-slots and rooms.
A stream is an overall theme of research, with one or two assigned stream organisers.
When an article is submitted, it is either submitted to a specific stream or assigned by the
program chair to the most appropriate stream. Examples of streams are: "Behavioural
OR", "Discrete Optimization and Algorithms (contributed)" or "ORAHS: OR in Health
and Healthcare". Here the stream "Discrete Optimization and Algorithms (contributed)"
consists of submissions, not to any specific stream, but allocated by the program chair
to this stream.

The stream organisers are typically leading researchers in the topic and they are in
charge of the detailed management of the stream. Each stream is allocated a number
of sessions, corresponding to the number of submissions divided by 4 rounded up. In
2022 the stream "Behavioural OR" had 35 submissions and was assigned 9 sessions. The
division of labor between the scheduling team, Thomas Stidsen and Dario Pacino (Local
Chair of EURO-2024), is then to assign a timeslot out of the 12 possible timeslots and
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a room to each of the 9 sessions. The stream organiser will then have to assign each of
the 35 presentations to one of the 9 sessions. This division of planning responsibilities
have served the EURO conferences well for many years.

1.2 Schedule goals

The ultimate goals for the scheduling is to make the conference as pleasant and econom-
ical as possible for the participants. This is however a goal which needs to be quantified.
Hence a number of different objectives exist:

– Sessions of the same stream in same room (making finding the sessions easier)
– Sessions of the same stream consecutive, i.e. if timeslot 3 has a session of a stream,

if that stream has more sessions, there is either a session of the stream in timeslot 2
or 4.

– Streams which are similar in topic should not overlap in time. This cannot be
avoided, but should be minimized. How similarity is defined, is detailed below.

– Streams belonging to the same Area should take place in nearby rooms
– Size of the rooms should be of sufficient size, but not too big.

2 Schedule Data

The data for the schedule is given as a set of streams B 2 (, a set of timeslots C 2 )
and a set of rooms A 2 '. Each stream B has a number of submissions (*⌫B 2 /+

which leads to a number of sessions for a stream (4BB8>=B = d (*⌫B
)
e. Finally we need

an estimate of the number of conference participants who will join the stream to listen
to the presentations. This is a number which is hard to approximate and as a very sim-
ple approximation, we simply assume that all the presenters also participate in the stream.

At EURO-2018 in Valencia, we started using a new type of model, where the concept
of a pattern was used. The idea is simple: Instead of simply assigning each session each
own binary variable to decide when and where to place it, we instead generate a number
of patterns for each stream, see Table 1 below, where 4 patterns are found for a stream
that cannot be started up in time-slot 1. Given a stream with 8 sessions, where it is not
possible to have a session in the first timeslot, these 4 patterns are the only possible
patterns. The big advantage of this approach is that the two first requirements of the
above list of objectives are automatically obtained. It can also lead to the need for more
rooms, but usually this is not problematic.

Finally, we need to quantify the relatedness of different streams. All articles submitted
to a stream are allocated up to 3 keywords. Then all the keywords used for the articles
of a stream is saved in a set  B 2 /+ and the number of times each keyword of a stream
is used is saved in 2B,: 2 /+ 8 : 2  B . Then the average number of times a keyword

appears in a stream is calculated: 2B =
Õ
:2 B

2B,:

| B | . Finally, the co-variance of the number
of times a keyword compared to the average no of keywords appears in two different

streams is calculated: ⇠>+B1 ,B2 =
Õ
:2 

(2B1 ,:�2B1 ) (2B2 ,:�2B2 )s✓ Õ
:2 

(2B1 ,:�2B1 )2
◆ ✓ Õ
:2 

(2¯B2 ,:�2B2 )2
◆
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Pat MA MB MC MD TA TB TC TD WA WB WC WD
1 X X X X X X X X
2 X X X X X X X X
3 X X X X X X X X
4 X X X X X X X X

Table 1: Patterns for an 8 session stream

3 Schedule Model

The basic decision for the overall scheduling of the conference is hence to choose a
pattern for a session B and select a room A . This is represented by the binary variable
G
B

C ,A
2 {0, 1} which takes the value 1 if stream B uses the pattern with the first time-slot

use C in room A.

This leads to the following, relatively simple model:

min
’

B1,B2,C ?1,C ?2,A
⇠>+B1,B2 · ?0C_>E4A;0?B1,B2

C1,C2 · GB1
C ?1,A · G

B2
C ?2,A

Such that: ’
C ?,A

G
B

C ?,A
= 1 8 B

G
B

C ?,A
2 {0, 1}

The above model is quadratic, but is easily linearized. Since the actual planning is not yet
finalized at the time of abstract submission, we expect more objectives and constraints
to be added, and these will also be presented. At EURO-2022 in Finland additional
constraints were implemented to optimize the co-location of related streams in nearby
rooms. The selection of rooms was also optimized.
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Abstract. This paper extends a preliminary model to address the very important
problem of aligning industrial production with time periods where more renewable
energy is available. Modern industries may use multiple energy sources, each
having different temporal and quantitative availability. Our model uses forecasted
day-ahead energy prices and energy production mix to generate an optimized
production schedule. A toolset approach is applied where multiple solvers that
share a common data model is implemented. The paper presents a production
level Constraint Programming (CP) model and results from applying the toolset
to a number of real world instances.

Keywords: Sustainability, Industrial Production Scheduling, Flexible Job Shop
Scheduling

1 Introduction and related work

Emerging industrial sustainability domain dictate new production efficiency interven-
tions driven by concerns related to energy costs and climate changes. Local energy
production, renewable energy sources that introduce stochasticity in the availability and
auxiliary energy markets effect the energy mix and prices creating a new deregulated
era. Production scheduling is critical in the sustainability decision making process.
Integrated production scheduling, maintenance planning and energy controlling for
sustainable manufacturing systems using a hybrid of a Non-dominated Sorting Ge-
netic Algorithm (NGSA-II) based multi-objective genetic algorithm and a mathematical
model is used in [1]. A framework to allow collaboration between energy providers and
manufacturing companies is proposed in [2]. Energy price forecasts are signaled to the
manufacturers and an adaptive production scheduling approach considering the power
usage of manufacturers in response to time-varying energy prices is presented. In [3] a
Mixed Integer Linear Programming (MILP) stochastic programming model is proposed
that simultaneously optimize production scheduling and electricity procurement. An
energy aware scheduling model to optimize steel industry operations when multiple
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energy sources are available using a minimum-cost network flow for cost optimization
is proposed in [4]. Recently, a flowshop scheduling problem to simultaneously mini-
mize makespan and total energy cost using critical-path based local search methods is
proposed in [5].

2 The EnerMan EAPS toolbox

The EnerMan Energy Aware Production Scheduling (EAPS) Toolbox supports the com-
bined requirements collected from diverse problems from energy demanding production
processes like automotive manufacturing and testing, semiconductor production, steel
and aluminum production, food processing and 3D additive components manufacturing.
A generic software component allows potential users to introduce new features in their
production planning and scheduling. The toolbox implements a number of construc-
tive heuristics, meta-heuristics and a Constraint Programming (CP) based solver. In the
current paper, a version of the CP solver is presented.

3 Constraint Programming Solver

The current CP model extends a preliminary CP model[6]. Special constructs like inter-
val variables, specialized global constraints (e.g., noOverlap, circuit, element) among
others are employed. The current implementation uses the most performant open source
solver (OR-Tools CP-SAT) and a commercial one (ILOG CP). Python is used for im-
plementation as it was easier to manipulate the amount of data required. The toolbox is
provided to the other services of the EnerMan platform as a OpenAPI RESTFul services,
exchanging data model information as JSON based messages.

Let J/Tj represent the set of jobs/tasks that must be scheduled, A the set of task
attributes and aj,t the attribute associated with each task. The set of factories and set of
machines in a f factory are represented by F and Mf respectively. Om and cm represent
the operation model and capacity of machine m. The setup time that will be needed if
tasks t1, t2 will be scheduled at machine m, with task t2 processed as the next task after
task t1 is represented by Sm,t1,t2. For each task t of job j and for all possible start times
the task can be scheduled at factory f, machine m and operation mode o, vectors Cj,t,o,m,f
and ECj,t,o,m,f hold the energy consumption and cost that task t incurs. These values are
calculated in advance by considering the machine characteristics and the energy cost
components.

The main variables of the model xvarj,t,o,m,f are optional interval variables that
represent if a task t of job j instance is performed on a machine m of factory f using
operational mode o and have a start time sj,t, an end time ej,t and a Boolean variable
is_pj,t,o,m,f that represent if they exist. evarj,t,o,m,f is an integer variable for the energy
cost of a task. Additionally, auxiliary variables sj , ej are the start and end time of a job,
assigned_toj,t holds the machine it is processes on, bt1,t2,m,f are Boolean variables that
assumes value 1 if both tasks t1, t2 are processed at the same machine and task t1 is
processed immediately before task t2 on machine m of factory f.

The global constraint noOverlap is used to avoid simultaneous processing of multiple
tasks at the same machine when the capacity of a machine equals to 1. When 2< � 1,
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the global constraint Cumulative is been used instead. For each 5 2 �,< 2 " 5 , 9 2
�, C 2 )9 , > 2 $<

=>$E4A;0?(0;;GE0A 9 ,C ,>,<, 5 ), 2< = 1 (1)

⇠D<D;0C8E4(0;;GE0A 9 ,C ,>,<, 5 , 2<), 2< � 1 (2)

If a machine is not available for specific time periods across the horizon of the
schedule, a set of dummy interval variables are defined with fixed starting times and
durations corresponding to the time periods that this machine is not available. This set
of dummy interval variables are used in the previous constraint, disallowing processing
of tasks to this machine.

Each C 2 )9 of 9 2 � must be scheduled exactly at one available machine.

’
5 2� ,<2" 5 ,>2$<

8B_?
9 ,C ,>,<, 5

= 1 (3)

To impose a setup time, when a pair of incompatible tasks are scheduled in sequence
at the same machine, the global constraint Circuit is used that defines a Hamiltonian
path in a sequencing graph that visits each node exactly once. To determine the task
sequence, a graph is defined for each machine and the nodes of this graph are all the
tasks that can be executed at it. For each 5 2 �,< 2 " 5 ,

⇠8A2D8C (0A2B<, 5 ) (4)

⇢=3$ 5 (GE0A 9 ,C1,>,<, 5 ) + (<,C1,C2 <= (C0AC$ 5 (GE0A 9 ,C2,>,<, 5 ) (5)

The energy cost of a task depends on the starting time of the corresponding interval
variable. The global constraint Element determines the energy cost of a task t.

⇢;4<4=C ((C0AC$ 5 (GE0A 9 ,C ,>,<, 5 ), ⇢⇠ 9 ,C ,>,<, 5 , 4E0A 9 ,C ,>,<, 5 ) (6)

The objective function coefficients c1, c2 determine the relative weights between
energy consumption and energy cost.

min
’

92� , C2)9 , 5 2� , <2" 5 , >2$<

⇣
21 ⇤ ⇠ 9 ,C ,>,<, 5 ⇤ 8B_? 9 ,C ,>,<, 5

22 ⇤ 4E0A 9 ,C ,>,<, 5

⌘

(7)

4 Evaluation, Conclusions and future work

Fig. 1 represents a weekly solution from a semiconductor manufacturing industry, with
colours representing different task types, the red line the variability of energy cost and
the green line the cumulative energy cost. In the specific instance more than 9K tasks are
scheduled. It was observed that it is possible to reduce the production cost by 6% while
in parallel we reduced the generated CO2 by 15% without sacrificing throughput. We
intend to release the solvers along with the data model and problem data to the public



Industrial Production Scheduling in the Energy Deregulation Era 349

when we manage to anonymize the related data and appropriate approvals are given by
the problem owners.

Fig. 1. Weekly schedule from a single factory of a semiconductor manufacturing
industry.

We intend to extend the toolbox with the ability to automatically generate what-if
scenarios based on the forecasted prediction variability to calculate alternative solutions
transitions that will allow the factory to during the implementation of a scenario if a
demand response signal is observed the factory to participate in the demand response
energy market without significantly sacrificing production performance.
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1 Introduction

In the field of AI Ethics, scholars have identified various kinds of ethical issues related to
autonomous decision-making algorithms [6], which include Operations Research (OR)
applications. While methods for addressing some ethical issues have been studied in
scheduling contexts, especially fairness criteria [10], there are still research avenues for
OR applications that have received limited attention. We consider that ethics cannot be
efficiently integrated into a decision tool without considering the specific and dynamic
aspects of the problem on the field [2]; thus we propose here a design for a decision
tool for the Nurse Rostering Problem (NRP) that allows for a better integration of moral
values and ethical considerations.

2 Computing moral values

In the field of ethics, multiple frameworks have been developed to describe the moral
preferences of individuals by identifying core values one would wish to respect. Taking
into account one of them, the basic human values theory [8], we try to address the main
issues of NRP by identifying first which aspects may be related to which of the theory’s
ethical principles. For example, some constraints such as satisfying minimum personnel
requirements may be related to the conformity value, while others such as balancing
workload across employees can be considered as benevolence and universalism. This
approach forms a basis for a moral compass of decision-makers.

Mathematically, these potentially conflicting values are represented with norms that
may be either modeled as objective functions or constraints. Hard constraints may be
used to represent a threshold that has to be attained regarding a certain norm, refusing all
solutions that do not meet it. Alternatively, using soft constraints allows the consideration
of such solutions as valid but of lesser fitness, depending on their assigned weights.

These weights implicitly create a hierarchy between soft constraints, where the ones
with the highest penalties will be preferred to the others. Thus, an ‘ethical profile’ can be
drawn from the way the objective function is modeled. Multi-criteria decision-making
(MCDM) methods allow users to visualize the different set objectives and/or trade-offs
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between efficient solutions. For these methods, all objectives are considered equivalent
in the model; only the end-user has the agency to either choose their preferred solution
or decide how these objectives should be ranked or prioritized.

An important limitation of standard modeling approaches with hard and soft con-
straints with a single objective function when it comes to ethical decision-making is
its static aspect. As moral values are constantly evolving [9], a mathematical model
prioritizing some criteria and enforcing ethical constraints might become irrelevant
and unreliable in the future, or for people with a different cultural background [1].
MCDM approaches such as interactive methods [4] offer some flexibility by including
the decision-maker in the loop, allowing them to decide which criteria are most im-
portant in their current situation. Nevertheless, these criteria themselves as well as the
problem structure typically remain the same, cannot be modified and might also lose
relevance with time passing and context changing.

We argue that a human-in-the-loop decision-making process that gives more agency
than standard MCDM interactive methods could be used to build a tool that better con-
siders ethics. An interactive process offers some advantages that could benefit the whole
nurse scheduling process. Incorporating human interaction allows for a better adaptation
to new conditions, which helps to generate well-suited schedules and reinforces user
agency as they may have a better comprehension of the whole process [7]. An open
process also allows other stakeholders such as nurses to better grasp how a schedule has
been designed, which might be regarded as a fair process [3].

3 Integrating ethical considerations into an interactive tool

We propose here to use an interactive reoptimization method [5] adapted to an NRP,
where the decision-maker can iteratively modify the set of rules, which correspond to
hard constraints, to obtain new solutions. These modifications may consist of either local
changes (e.g. assigning a nurse to a certain shift on a specific day) or global changes (e.g.
forbidding some shift patterns for all nurses). More specifically, users have access to a
catalogue of ‘template’ rules that can be parameterized according to their preferences.
For example, the catalogue contains a template called ‘Limit consecutive working days’
that can be parameterized by selecting the nurses and period for which this rule should
be applied, as well as the limit value. Whenever a rule is added to (or deleted from) the
model, a new solution is generated according to the changes, following a user-defined
optimization criterion also chosen from a catalogue.

This design aims to provide an interactive tool that displays and allows changes
to the main aspects of the mathematical models that are used. While the preliminary
work that established the catalogue limits the decision-maker’s possibilities, it allows
non-experts in OR to directly manipulate the NRP formulation. The proposed design
may be especially useful when a clash between two ethical criteria arises and arbitration
is needed to obtain a feasible solution. Through trial and error, the user may have a
better understanding of the problem structure and the different trade-offs they should
consider. While we focus on the scheduling process itself, such tool could also be used in
a reoptimization context, when unplanned events may arise during the scheduled period.
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A possible drawback of this method is that ethical aspects related to scheduling might
be ignored or forgotten in the process, as scheduling tasks are often difficult for human
decision makers. To help the user detect potential ethical flaws in a candidate schedule,
we propose to implement the presentation of specific ethical recommendations that
would highlight some of them. The set of presented recommendations may be determined
by the user’s ethical preferences, which could be assessed either beforehand or during
the iterative process. This information could be used either to show recommendations
that are preferred by the user or to nudge them towards other ethical criteria they would
otherwise not likely consider.
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1 Introduction and contribution

In hospitals, nurse schedules are sensitive to disruptions such as sick leave since the
absence of nurses with the right skills can have a severe impact on healthcare quality.
The literature on the nurse rostering problem (NRP) is extensive and addresses a variety
of aspects, such as minimizing the cost of schedules, meeting work regulations, and
satisfying the preferences of the staff. The nurse rerostering problem (NRRP), which
models rerostering of a schedule due to the absence of nurses, was first defined by Moz
and Pato [2]. It has, for example, been studied in [4] where the aim is to do the rerostering
with as few changes as possible while respecting staffing demand and hard constraints.
They schedule shifts and tasks, and in the rerostering, nurses are allowed to change
shifts or change free days to work days. Strategies to achieve robust and cost-efficient
schedules are considered in [5], by using capacity buffers and reserve shifts, which can
be changed to a working shift at a later stage. There are also general studies of staff
rerostering, e.g. [3] that proposes a large neighbourhood search enhanced with machine
learning for solving the problem.

We consider nurse rerostering from a strategic perspective and study the case of
having multiple skills and varying staffing demand. Our aim is to design a decision
support tool to be used on a strategic level to analyse how the distribution of skills
affects the sick-leave robustness of schedules. As a first step, we here propose a scheme
to both schedule and evaluate the schedule with respect to sick leave, similar to the work
by Wickert et al. [5], and we evaluate it on real data from a case study. See Figure 1 for
an illustration of our scheme.

We compare three approaches for handling the distribution of skills, denoted (i)
case, (ii) mix, and (iii) min, where case allows the use of all available skills, min
minimizes the available skills in a base schedule while scheduling with a capacity
buffer. The approach mix is based on the same base schedule as min, but for each
generated scenario, it is possible to add skills to cover understaffing.

For the scheduling part, the aim is to minimize understaffing and add an additional
buffer per day, shift and task, while respecting the work time of the available nurses. A
prerequisite for sick-leave robustness to be of interest is to have more nurses than what is
required to meet the minimum demand. Our objective is then to spread out the additional
nursing resources in such a way that the schedule is robust with respect to sick leave. To
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I. nurse
scheduling

II. scenario
generation

III. reassign-
ment of tasks IV. evaluation

Fig. 1: Overview of the proposed scheme.

evaluate the robustness of a schedule with respect to sick leave, we generate scenarios.
For each shift a nurse is assigned to, we assume that there is a probability that the nurse
is absent and hence does not contribute to the staffing demand. This probability is based
on one year of historical data of sick leave. For each scenario, we solve a restriction
of the NRRP in which only tasks are reassigned. We impose this restriction as there
are often limitations for changing a nurse’s shift or a free day to a working day. For
some understaffed shifts, it is possible to find a substitute nurse, but this is not known
at the stage of scheduling. Hence, the only certain way to cover for an absent nurse is to
reassign the tasks of the other nurses working that shift. If possible, the aim is to cover
all the demands on tasks, or if not possible, at least cover the most important tasks.
Finally, the updated schedule is evaluated with respect to understaffing.

2 Case study

Our case study is from a ward at a Swedish university hospital which has about 50 to 60
nurses and a scheduling period of 10 weeks. The ward requires nursing staff round the
clock on both weekdays and weekends. There are three types of shifts—day, evening,
and night—and for each shift, there is a task-based staffing demand. That is, a nurse is
assigned a task for each scheduled shift. There are in total five tasks, requiring specified
skills, except for one skill that is common for all nurses. The combination of skills
is individual for each nurse and there is no general hierarchy between the skills. The
demand varies over the scheduling period, for example, some tasks only appear every
third week. The case can be classified as ASB|V3|LR based on the definitions from [1].

For the case study, we have formulated a straightforward mixed-integer programming
model, based on binary variables indicating if to assign a nurse to a task at a specific shift,
or not. There are additional variables concerning requirements of a task at a specific
shift. They are used to model penalties for understaffing, lack of buffer, and presence
of additional overstaffing. For the approaches including distribution of skills, there are
binary variables for which tasks are available per nurse. The starting point is the skills of
each nurse, and our approach tries to remove skills while still satisfying staffing demand,
including a buffer. A summary of the included constraints is as follows.

– A nurse works at most one shift and is assigned at most one task per day.
– A nurse’s maximum number of work days in a row is respected.
– A nurse’s maximum number of night shifts is respected.
– The total work time of a nurse during the period is within an interval.
– A nurse works only according to permitted shift patterns, specifying which consec-

utive shifts that are allowed to work.
– On a weekend, a nurse is either free or works both Saturday and Sunday.
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– A nurse works a specified number of weekends.
– A nurses should not work two weekends in a row and on-duty weekends should be

spread out in the schedule.
– The work of different shift types is evenly distributed among the nurses.
– The staffing demand for each task at a specific shift is respected by either assigning

a nurse to the task or by declaring a shortage.

3 Computational Experiments

Our evaluation is made on 100 simulated scenarios with a risk of absence of 6.4%,
which is based on data from the ward. On average per scenario, there are absent nurses
on 123 occasions. We show results for the three approaches case, mix, and min. The
average understaffing for all shifts, weekdays, weekends is for approach case 72, 46,
and 26, for approach mix 73, 46, 27, and for approach min 73, 46, 28. See Figure 2
for an illustration of understaffing per scenario. The computational times required for
optimally solving the models for case and min are 1.5 h and 7 h, respectively.

Figure 3 shows the distribution of skills for the three approaches. Skill A is common
among all nurses. It is clear that the number of nurses with skills C and D can be reduced
to a large extent, while skill B and E appear to be more critical for the schedule and the
sick-leave robustness. On average, the number of available skills (B-E) is 114, 69, and
67, for case, mix, and min, respectively.

Fig. 2: Number of shifts understaffed per scenario for the three approaches, divided into
all days (all), weekends (we), and weekdays (wd).
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Fig. 3: Number of available skills of each type for the three approaches.

4 Discussion and conclusion

We have described a preliminary design for a decision support tool to plan the staff’s
distribution of skills. From our case study, we have shown that our tool can be used to
indicate which of the available skills can be removed, with only a small impact on both
the understaffing in the nominal scenario and scenarios with sick leave. These are results
to be further discussed with the hospital.

There are simplifications in our approach, we consider a standard schedule period
without individual nurse preferences, holidays, and vacation. The addition of nurse
preferences could result in a less robust schedule and the presence of holidays and
vacation would make more shifts understaffed in the initial schedule and also reduce the
capacity to have buffers, limiting the possibilities to cover for sick leave.
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1 Introduction

Field hockey in Belgium is rapidly growing in popularity. The recent success of the
national hockey team (world champions in 2018, European champions in 2019 and
Olympic gold in 2020) overwhelmed the Royal Belgian Hockey Association (RBHA)
with a multitude of new clubs and an increased number of entries. Therefore, the con-
struction of adequate schedules for hockey youth competitions has become increasingly
more challenging.

Currently, teams are partitioned into leagues. The leagues are formed based on the
travel time between the home venues of the teams, a problem that is known as the
sports team grouping problem [4]. Given the assignment of teams to leagues, a schedule
is constructed for each league with the objective of minimizing the number of venue
capacity violations. This problem is also known as the multi-league sports scheduling
problem [1,2].

Although this approach is widely used in practice, it also has some limitations.
First, because these problems are handled sequentially, prioritizing travel times means
that capacity violations often cannot be avoided. A solution method to integrate the
partitioning and scheduling problems is proposed in [3]. Second, the requirement that
teams can only face teams from the same league restricts the solution space. Although
a solution might be found that performs well with respect to total travel time, close
neighbors are sometimes partitioned into different leagues, leading to much disbelief by
the teams.

In this extended abstract, instead of partitioning teams into leagues, we propose to
allocate teams to one league only. Typically, the size of this league is too large to fit
a round robin tournament. To resolve this issue, teams play a fixed number of games
in which they can face any subset of the opponents. Hence, this format is called an
incomplete round robin tournament and greatly extends the solution space, providing
opportunities for reducing travel times.

2 Problem description

We consider hockey youth competitions of age categories under 7, 8, and 9 in the first
half of the 2023/2024 season. Each age category is further split into a boys and girls
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competition. Moreover, each team is characterized by a strength level ranging from 1-3.
This results in 18 categories, including 11 to 93 teams with a total of 808 teams. Each
match is played at the home venue of one of the two teams. Whether a team plays home
or away in a round is given by its home-away pattern (HAP).

Each club has a limited number of fields that are, in each round, available during a
limited number of hours. The RBHA imposes that venue capacity requirements should be
strictly met: a timetable should not require a club to host more matches than it physically
can. As teams from the same club are often scattered over multiple categories, it is
not possible to schedule the categories independently from each other without violating
some of these constraints. Other constraints are that the same opponent can be seen at
most twice: once at home and once away, the number of home and away games of each
team should be balanced and three consecutive home or three consecutive away games
are forbidden. Moreover, teams cannot see the same opponent twice in four consecutive
slots and can have at most one bye. Finally, the objective is to reduce total travel time.

3 Solution approach and preliminary results

Since a single IP formulation to schedule all youth competitions simultaneously turns
out too large to handle by CPLEX, we develop a fix-and-optimize based matheuristic.
Neighborhoods are constructed by fixing either all variables related to teams from a
subset of categories or all variables related to a subset of time slots. Next, a percentage
of the HAPs is fixed for each neighborhood, depending on how difficult the neighborhood
is to solve. Moreover, each neighborhood starts with a time limit of one minute. However,
time limits are extended to five minutes for promising neighborhoods that are harder
to solve. Neighborhoods are chosen based on repeatedly solving multi-armed bandit
problems. We avoid being trapped in a local optimum by freeing a subset of the variables
and maximizing the number of variables that can be changed from this set, while still
guaranteeing feasibility.

The proposed matheuristic is able to find a solution with a total travel time of 166,666
minutes (<1.5% of best found integer bound) in a reasonable time (12h). In contrast to
the original schedule, all venue capacities are satisfied. Our approach also manages to
reduce the total travel time by 25%, which corresponds to more than 971 hours. In total,
644 of the 808 teams are better off: the improvement in individual travel time of the
teams are given in Figure 1.

Although the situation improves for most of the teams, we see that some teams are
also considerably worse off. This is not surprising, as we only look at total travel time
at the moment. Therefore, we are currently working on an approach that distributes
travel times more fairly over the teams. The RBHA is very positive about our work and
will adopt the incomplete round robin tournament in the second half of the 2023/2024
season.
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Fig. 1: Distribution of the improvement in team’s travel time (in minutes) compared to
the original schedule

Green depicts a reduction in travel time, while red depicts an increase in travel time,
compared to the original schedule used for the first half of the 2023-2024 season.
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1 Introduction

Student scheduling, sometimes called student sectioning, involves assigning students
to classes (course sections) based on their individual course demands. There are many
hard constraints and optimization criteria, including course structure, class times and
limits, reservations, student and course priorities, student preferences, course alterna-
tives, travel times, and free-time requests. The student scheduling problem in UniTime
was first presented in [2] as a proof of concept. It has gone a long way since then and
was successfully turned into a software solution capable of scheduling tens of thou-
sands of students, with a scalable web-based user interface, additional constraints, and
optimization objectives, and interfacing with many other systems at the university.

Purdue University is the main contributor to the UniTime project, and it is used there
for various educational timetabling and scheduling needs, including course timetabling [4],
examination timetabling [1], instructor scheduling, and student scheduling. The student
scheduling process starts with batch student scheduling available to all undergraduate
students, followed by open registration. Graduate and professional students only use
the open registration. During the batch scheduling process, a student is advised by
their advisor, who fills in course recommendations, and the student submits their course
requests. These contain courses the student wants to take, including alternatives and sub-
stitutes, preferences, and free-time requests. Based on these and the course timetable,
the UniTime solver is run at the end of the pre-registration period, and all students are
provided with an initial class schedule. Afterward, during the open registration, the stu-
dents can go into the system and manually change their schedules, add and drop courses,
or waitlist for courses or classes that are full.

The main campus at Purdue University has over 50,000 students. During the Spring
2024 registration, there were over 8,400 timetabled classes from 3,000 courses. Over
35,000 (out of roughly 40,000) undergraduate students filled in their pre-registration,

1https://www.unitime.org

https://www.unitime.org
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which contained over 180,000 course requests, and were provided their initial class
schedules.

The collected student pre-registration data can also be used during the course
timetabling process, making sure that the created timetable will allow students to get
the courses they need. See the ITC 2019 competition2 for more details [3], as the com-
petition problems were collected using UniTime, and the problem combines both the
timetabling aspects (assignment of classes to times and rooms) with student scheduling
(assigning students to classes). However, there are fewer student scheduling constraints
during the course timetabling process as the solver only minimizes potential student
conflicts as one of the optimization criteria, possibly only for a subset of the classes
offered at the university at a time (at Purdue, each department builds its own course
timetable on top of the centrally-timetabled large lecture room classes).

2 Student Scheduling Problem

The student scheduling problem consists of courses that have already been timetabled,
students and their individual course demands, and producing a class schedule for each
student. It is modeled as an assignment of student course requests with enrollments, i.e.,
valid combinations of classes that the student needs to take to enroll into a course. There
are various hard constraints, such as students not having a time conflict (unless allowed,
in which case the overlapping time is to be minimized), classes and courses being limited
in size, or restrictions limiting who can attend a particular class or course. It is also an
optimization problem, combining a long list of various criteria, such as maximizing the
number of courses each student gets, considering student and course priorities, student
preferences, penalizing alternatives and substitutes, minimizing distance conflicts or
travel times, etc. In the rest of this section, the most interesting aspects of the student
scheduling problem are discussed.

Course Structure Each course may be offered in multiple configurations, such as face-
to-face or online, each with multiple components (subparts), such as a lecture and a lab.
Each subpart may contain multiple alternative classes. A student requesting a course
will get one class of each subpart of a single configuration. There can be additional
parent-child relations between individual classes, which also must be followed. So, for
example, a student may get Lec 1 - Lab 1, Lec 1 - Lab 2, Lec 2 - Lab 3, or Lec 2 -
Lab 4 class combination if attending the course face-to-face, or Dist 1 when attending
the course online. Each class can also have a limit, allowing only a certain number of
students to get in.

Reservations and Restrictions Access to courses or certain components of courses,
such as configurations or individual classes, may be restricted with reservations. A
reservation reserves a certain number of seats in the course, or some of its components,
for a particular group of students, e.g., identified by their study program. A restriction
does not reserve any space, but the students must follow it. For example, a student of
an online program may be restricted to the online course configuration, while other

2https://www.itc2019.org

https://www.itc2019.org
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students may freely choose between the two configurations, assuming space is available.
Similarly, there can be 100 spaces in a course reserved for students of a Computer
Science major, or the space in one of the Labs may be reserved for a particular cohort.

Alternative and Substitute Courses A student may provide alternatives to each course.
The aim is to get a given number of courses, and one or more alternative courses can
be provided for each course. It is also possible to provide substitute courses that can
act as alternatives to any other course requests except those that have been marked as
no-sub by the advisors (typically those that the student must take). The order in which
the courses are requested is also important, as it helps us to break the ties, e.g., when it
is not possible to get both courses because they are overlapping in time, or when there
are more students requesting the course than the space available.

Student Preferences and Requirements A student can indicate which course con-
figurations and/or classes are preferred for each course. It is also possible to provide
free time requirements, which can act as unavailabilities (i.e., a student cannot get a
class at the time) or preferences (i.e., an overlapping time with the free time should be
minimized), depending on the position of the free time among the courses.

Students may also indicate whether they prefer online or face-to-face classes and
whether back-to-backs are preferred or discouraged. For the Summer terms, which are
organized into three four-week modules, it is also possible to indicate during which
modules the student can have classes and whether they can attend classes on campus.

Student and Course Request Priorities As Purdue is constantly growing its student
population, there can be many courses with more students requesting them than space
available. A number of priorities have been added to help students graduate on time. First
of all, advisors may indicate courses as vital to the student, which means that the student
absolutely needs the course (or one of the provided alternatives) to progress towards
their degree. Moreover, students are divided into priority students (such as athletes and
students in university bands and orchestra), students near graduation (with 100 or more
credits earned), senior students (60 or more credits), and the rest. Vital course requests
take priority over student priorities.

3 Student Scheduling Solver

Student scheduling uses the same hybrid solver as other UniTime modules, combin-
ing constraint-programming primitives with local-search-based algorithms and various
heuristics. While the solver can work with incomplete solutions, it does not allow the
breaking of hard constraints. The search consists of various phases. During the first
phase, a schedule for each student is constructed, with vital course requests assigned
first and students taken in the order of their priorities. A branch-and-bound algorithm
is used for each student to find the best possible schedule using the remaining available
space. After the first phase, various other heuristics and neighborhoods are employed,
e.g., looking for a swap between two students. Or assigning a student to a course while
some other student (or students) is bumped out, e.g., due to the class limits. A branch-
and-bound with a limited depth, stochastic hill climbing, and great deluge is used at
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various search phases. The solver uses multiple CPU cores, benefiting from the fact that
individual student schedules do not interact with each other that much, typically only
when the last spot in a course, a class, or a reservation is involved.

The same constraint-based model, optimization criteria, and some algorithms are
also used in the other problems of student scheduling in UniTime. For example, when a
student enrolls in a new course or courses during the open registration period, the same
branch-and-bound algorithm creates the best possible class schedule, given the current
availability and the student’s existing schedule. Or providing suggestions when moving
classes around in an existing class schedule.

The student scheduling solver is also used when there is a course timetabling change.
For example, UniTime will automatically move students enrolled in a canceled class to
other classes of the course or put them on a waitlist when there are no other possible
enrollments into the course that are both available to the student and do not conflict with
the rest of their schedule.

4 System Demonstration

Student scheduling is an important hard optimization problem of a huge size. In this
abstract, a number of aspects that were required to bridge the gap between theory and
practice were outlined. The demonstration will present the UniTime system and its user
interface, covering the whole student scheduling process at Purdue, step by step. It starts
with student advising and pre-registration. It follows with the batch student scheduling,
but the solver is also used to provide nightly test runs, which are used to monitor
pre-registration progress and to catch any potential issues early. The demonstration
will conclude with open registration, showcasing a student making a schedule change,
swapping a course, and/or wait-listing for another course or class that is currently full.
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Abstract. Collaborative learning has been widely used to foster students’ com-
munication skills and facilitate joint knowledge construction. However, there exists
ongoing debate regarding the optimal formation of teams to maximize the devel-
opment of these competencies. This work aims to provide educational managers
and teachers with a practical tool for team formation, allowing for the control of
member diversity within teams and similarity across teams based on pre-selected
student characteristics. The tool takes input in the form of individual student as-
sessments across various characteristics, alongside specifications for team size
ranges. Additionally, for each characteristic of the students, it takes a definition
of its order of importance and a diversity goal to achieve within the teams, that
is, heterogeneity or homogeneity. The output is a distribution of students into
teams that satisfies the specified sizes and optimizes diversity goals in the given
order while promoting similarity across teams. The tool solves a lexicographic
mixed integer linear programming problem. A notable feature of this approach is
its ability to accommodate diversity criteria for both numerical and categorical
characteristics. Through experimentation with six real-life cases involving up to
151 students per case, the tool demonstrates swift problem-solving capabilities
using state-of-the-art solvers. This efficiency renders the tool readily applicable
in practical educational settings.

Keywords: Team formation, Mixed integer linear programming, Lexicographic
optimization.

1 Introduction

Collaborative learning is an effective method for engaging learners by facilitating com-
munication and idea exchange among team members to construct knowledge together
[10]. However, simply putting learners in teams does not guarantee the success of collab-
orative learning. Therefore, the classification of learners into well-functioning teams is
one of the most challenging tasks in the field of collaborative learning. A line of research
regarding team composition has categorized collaborative teams into two major types
based on the within-team composition, which is homogeneous team (i.e., learners within
a team having similar ability levels) and heterogeneous team (i.e., learners within a team
having dissimilar ability levels) [13]. Various studies have compared the two types of
teams on learners’ achievement and social interaction and there seems to be a slight
prevalence of the heterogeneous team as the best choice [13]. For example,researchers
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believe that, compared to homogeneous teams, learners in heterogeneous teams tend to
coordinate and create common ground faster and easier because the diverse skills and
characteristics of team members might be complementary to each other and to the team
as a whole [11,12]. In addition, from the economics perspective, the level of equality
or fairness in heterogeneous teams is higher than that in homogeneous teams because
resources (e.g., time, knowledge) are more likely to be equally distributed to each team
member instead of being collected by a single or limited number of team members [3].

In practice, three primary approaches are employed for team formation: random
grouping (i.e., assigning learners in the teams by chance), self-selected grouping (i.e., the
learners choose with whom they want to work), and controlled grouping (i.e., assigning
learners in the teams by instructors or computing systems based on certain criteria)
[1,6,2]. The random grouping method commonly lacks control over team homogeneity
or heterogeneity, potentially leading to unequal participation and the formation of teams
with varying characteristics. This can result in disparities among teams, fostering a sense
of unfairness [7]. The self-selected grouping method tends to produce homogeneous
teams characterized by shared interests and amicable relationships among members,
albeit often leading to decreased task orientation and engagement in off-task behaviors
[6]. The controlled grouping method addresses these issues by facilitating the creation of
teams with desired levels of diversity or similarity within teams while also controlling for
variation among teams. However, achieving these objectives complicates the assignment
process both in terms of formalization and optimal solution finding. Consequently,
research has increasingly focused on algorithmic approaches to achieve controlled team
formation.

In the past decade, a variety of algorithm-based team formation methods has been
proposed to form controlled teams, that is, to create teams that are as similar among
themselves as possible (inter-homogeneous), while maximizing the learners’ individual
differences within such teams (intra-heterogeneous). The majority of team formation
algorithms are based on population-based metaheuristics such as ant colony optimization
[4], particle swarm optimization [9], and genetic algorithm [2]. Local search-based
heuristics such as random restart hill-climbing [8] and variable neighborhood search
are also employed to form collaborative teams [15]. There is no standard definition of
the optimization criteria in these references. Perhaps the most flexible tool available
is CATME [8], that allows instructors to define their own characteristics of interest,
their weight of importance in the team formation and whether within-team similarity or
dissimilarity should be promoted. Information about the pre-selected characteristics can
be collected directly from the students using the web application built around the tool.
Characteristics are handled by discretizing them. One interesting characteristic modeled
in this way is the student-schedule compatibility to favor the creation of teams that can
actually meet. CATME then assigns students to teams by maximizing the minimum
of a compliance measure computed on each team. The assignment is found starting
by a random assignment and improving it by swapping students in a hill climbing
fashion. However, in studies that aim at assessing team creation policies (e.g., which
characteristics are relevant to consider, whether they should be similar or dissimilar)
finding heuristic solutions to the team formation problem is undesirable because it adds
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a confounding element to the analysis, namely, the unknown degree of approximation
of the optimal solutions.

In our work, we formalize the problem in a way that can be solved to proven optimality
by mixed-integer linear programming (MILP) solvers. Similarly to [8], we define a
compliance measure for each characteristic within the teams. We distinguish between
numerical characteristics (e.g., a real number from [0, 1]) and categorical ones (e.g., the
nationality) and define different measures for these types. For numerical characteristics
we use the largest range of values within the team, while for the categorical ones we
use the number of different categories represented in the team. For each characteristic
in the order of importance we solve an optimization problem that tries to adjust the
measure so that within-team compliance to similarity or dissimilarity is maximized and
among-team similarity is also maximized. It is easy to extend this approach with side
constraints like ranges on the size of the teams or student incompatibilities of the type
“two persons cannot be in the same team” or similar. Our tests conducted on instances
of the problem involving up to 151 students indicate that the MILP approach exhibits
notable efficiency and pratical utility. Leveraging this approach, we have successfully
formed heterogenous groups and examined the efficiency of such diversified teams in
enhancing students’ achievement and fostering positive emotions during collaborative
learning [14].

2 Problem Formulation

We want to team up a set ( of students indexed by B. Each student is characterized
by a set of characteristics (or factors or features) � = {1..<} indexed by 5 . Some of
these characteristics, �@ ✓ �, are quantitative or numerical, that is, they take values in
R; others, �2 ✓ �, are categorical and can be mapped to take values in N or B. For
example, the gender of a person can be mapped into the integer numbers 0 and 1. A
categorical characteristic 5 2 �2 takes values from a finite set of categories (or levels)
! 5 = {1..E 5 } ⇢ N indexed by ✓. Thus, a student B 2 ( is characterized by a vector
Æ2(B) = [2B1, . . . , 2B<] with 2B 5 2 R for 5 2 �@ and 2B 5 2 N for 5 2 �2. Further, let
c : � ! � be a permutation of the characteristics such that the permutation c(1)..c(<)
induces a strict total order on the characteristics (from most to least important).

We aim at combining the students in ( into a set of teams T ⇢ 2( . We can denote
such a team formation as a mapping f : ( ! T . Thus, f(B) = ) , if student B 2 (
is assigned to team ) 2 T . We want the team formation to be a partition of T , that
is, )1 \ )2 = ; for any )1,)2 2 T and

–
)2T ) = (, and such that the size of each

team ) in T under f is {b |( |/|) |c, d|( |/|) |e}, i.e., as equal as possible. Among all
team formations satisfying these requirements, ⌃, we want to find those that maximize
within-team compliance and among-team similarity with respect to the characteristics
under the order induced by c.

We formulate the preference criterion above in the following way. For a team for-
mation f, let X 5 ,?,) be the absolute difference in the values of the characteristic 5 for
any pair of students ? = (B, A) in ) , that is, X 5 ,?,) = |2B 5 � 2A 5 | for all 5 2 �@ , ) 2 T
and {? = (B, A) | f(B) = f(A) = )}. Then, let \

5 ,)
and \ 5 ,) for 5 2 �@ be the smallest

and the largest of these differences within each team ) and \
5

and \ 5 the minimum and
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Within-team
heterogeneity

Within-team
homogeneity

Categorical factor
min [

5
min [

5

max [
5

—

Numerical factor
min \

5
min \

5

max \
5

—

Table 1: The optimization applied for the two types of factors under the two different
expression of within-team compliance (heterogeneity or homogeneity)

maximum difference throughout all teams, that is, for 5 2 �@:

\
5
= min
)2T

\
5 ,)

= min
)2T ,?2)

X 5 ,?,)

\ 5 = max
)2T

\ 5 ,) = max
)2T ,?2)

X 5 ,?,)

Similarly, for a team formation f, let ` 5 ,) be the number different of categories of
the characteristic 5 2 �2 represented by the members of ) and let [2

5

and [2
5

for 5 2 �2

be, respectively, the smallest and largest number of categories present in any ) 2 T ,
that is, for 5 2 �2

[
5

= min
)2T

` 5 ,)

[
5
= max
)2T

` 5 ,)

We use [
5

and \
5

as measures of the within-team dissimilarity that we may want to

maximize or minimize and \ 5 and [
5

as measures of the among-team dissimilarity that
we want to minimize. In Table 1, we consider the different cases. Accordingly, if we aim
for within-team heterogeneity and among-team homogeneity, we aim at the following:
for each categorical factor, first, we maximize the smallest number of categories in
the teams, thus promoting within-team heterogeneity, and, second, we minimize the
largest number of categories, thus promoting the range between minimum and maximum
number of categories among the teams to be small and consequently favoring among-
team homogeneity; for numerical factors, first, we maximize the smallest difference
within the teams, thus promoting within-team heterogeneity, and, second, we minimize
the largest value of the differences within the teams, thus aiming at the smallest range
between these values and consequently promoting among-team homogeneity. If we aim
at homogeneity within and among the teams we only minimize the largest number of
categories and the largest overall difference.

We solve this multi-objective optimization problem by lexicographic optimization
using the strict order c of importance on the characteristics. For the case of aiming at
within-team heterogeneity, with two objectives to optimize for every characteristics each
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optimization problem considers the following objective:

lex max
f2⌃

(i1 (f), . . . , i2< (f))

where

i8 (f) =

8>>>>>><
>>>>>>:

\
5

if 8 = 2c( 5 ) � 1 and 5 2 �@

�\ 5 if 8 = 2c( 5 ) and 5 2 �@

[
5

if 8 = 2c( 5 ) � 1 and 5 2 �2

�[
5

if 8 = 2c( 5 ) and 5 2 �2

for 8 = 1..2<.

This means that we consider first the characteristic that is first in the order induced
by c, that is, 5 2 � such that c( 5 ) = 1, and maximize the value \

5
or [

5

depending
on whether 5 is a quantitative or a categorical factor, respectively. Once the optimal
team formation with respect to this objective has been found, we set that objective as a
constraint and maximize �\ 5 or �[

5
, which corresponds to minimize \ 5 or [

5
. Then,

we consider the next characteristic in the order, i.e., 5 2 � such that c( 5 ) = 2, and
repeat the process while keeping all previously optimized objectives as constraints. We
proceed in this way until all characteristics are considered.

Each optimization problem can be formulated as a mixed integer linear programming
(MILP) problem (see Appendix A) and solved with one of the available general-purpose
MILP solvers. Artificial restrictions on the set ⌃ of feasible team formations, such as
“student B cannot be in the same team as student A” can be easily added within the same
formalism.

Consider the example of Figure 1. We have four students B1, B2, B3, B4 described by
two categorical characteristics⇠1 and⇠2 and four numerical characteristics,⇠3,⇠4,⇠5,⇠6.
The order of importance of the characteristics is c = (1, 2, 3, 4, 5, 6). We want to group
the students in two teams )1,)2. The table on the left shows the values of the char-
acteristics for the four students with columns in the same order of importance of the
characteristics. The signs +/� indicate whether we are interested in within-group het-
erogeneity or homogeneity, respectively, for the corresponding characteristic.

The assignment made by the algorithm is shown in the table on the right. It corre-
sponds to f(B2) = f(B3) = )1 and f(B1) = f(B4) = )2. The last two rows show the
measures of compliance among the teams for each characteristic. For ⇠1 both teams
include two categories, which is the best possible in this case. For ⇠2 it is not possible
to have two categories in both teams because of the restriction imposed on ⇠1. For the
following categories it seems that the situation can not improved any further because of
the constraints introduced on ⇠1.

3 Practical Experience

We used the tool in six real-life situations on 20, 21, 79, 99, 110, 151 students with 12
or 13 characteristics of both types giving rise to a maximum of 25 objectives. We used
gurobi [5] as MILP solver, which can handle lexicographic optimization automatically.
On all instances except one, the full lexicographic series could be solved in less then
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C1 C2 C3 C4 C5 C6
+ � + + � +

B1 1 2 0.3 0.4 0.2 0.3
B2 0 3 0.5 0.3 0.7 0.8
B3 1 4 0.1 0.7 0.3 0.2
B4 0 2 0.8 0.9 0.4 0.5

Team 1 C1 C2 C3 C4 C5 C6

B2 0 3 0.5 0.3 0.7 0.8
B3 1 4 0.1 0.7 0.3 0.2

Team 2 C1 C2 C3 C4 C5 C6

B1 1 2 0.3 0.4 0.2 0.3
B4 0 2 0.8 0.9 0.4 0.5

Measures C1 C2 C3 C4 C5 C6

[
5

or \
5

2 2 0.5 0.5 0.4 0.6
[
5

or \
5

2 1 0.4 0.4 0.2 0.2

Fig. 1: A numerical example. On the left, the input data for a case with four students (on
the rows) and six characteristics (on the columns), of which the first two categorical.
The order of priority on the characteristics is the same as their indices and the preference
for within-team similarity (+) or dissimilarity (�) is indicated in the second row of the
table. On the right, the teams produced by the solution to the model.

60 seconds of time. The instance with 110 turned out harder to solve. In 1000 seconds,
only the first 3 objectives were solved, the fourth proved much more computationally
demanding. We decided to halt the solution process and to use the best solution found
up to that point.

4 Discussion

We have developed a tool designed for team formation, which considers relevant student
characteristics. Emphasizing diversity with respect to these characteristics within teams
can potentially foster competence development, while maintaining similarity across
teams in their treatment of student characteristics promotes fairness. We formulated
these goals in a mixed integer linear programming model accommodating both numerical
and categorical characteristics. We dealt with the presence of multiple characteristics
by asking teachers to prioritize them a priori, thus solving a series of lexicographic
optimization problems. Other approaches for managing multiple characteristics, such
as weighted sum and allowing partial degradation of previous objectives, are feasible
avenues to explore. While Pareto optimization presents an intriguing alternative, its
implementation entails greater complexity. Our tool has undergone testing solely on real-
life instances involving up to 151 students, organized into teams of 5. The results indicate
that the approach is generally computationally practicable and efficient. For instances
that require more computational resources, a transition from an exact to a heuristic
approach is possible by allocating a limited time budget for solving each objective in
the lexicographic series. This budget allocation can prioritize objectives associated with
higher priority characteristics, thereby facilitating computational tractability.

We are planning to conduct scalability tests on larger artificial instances. Moreover,
we would like to deepen our understanding of the solution quality and the influencing
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factors’ impact on outcomes. Notably, as illustrated in the numerical example of Fig. 1,
the situation might become blocked very early. Finally, we are actively developing a
web-based application to serve as an interface for out tool, facilitating its accessiblity
and usability.
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Appendix A – The MILP Model

Let GBC for B 2 ( and )C 2 T be the binary variables that denote the assignment of B to
)C under f. Let also HC for )C 2 T be auxiliary binary variables indicating whether a
team )C contains students or not. A feasible team formation X satisfies:

’
)C 2T

GBC = 1 8B 2 ( (1)

’
B2(

GBC  1C HC 8)C 2 T (2)

’
B2(

GBC � 0C HC 8)C 2 T (3)

’
B2(

GB,C �
’
B2(

GB,C+1 8C = 1..|T | � 1 (4)

GBC 2 B 8B 2 (,)C 2 T (5)
HC 2 B 8)C 2 T (6)

Constraints (1) ensure all students are assigned to a team. Constraints (2)-(3) ensure that
if a team is created it is assigned students between its lower and upper bound 0C , 1C ,
respectively. Constraints (4) are symmetry breaking constraints.

To compute the values \ 5 , \
5

we need to introduce auxiliary binary variables IB1 ,B2 ,C
that are one if the two students B1 and B2 are in team )C and zero otherwise. For an
feasible formation ÆG 2 X:

GB1 ,C + GB2 ,C � 1  IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (7)
GB1 ,C � IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (8)
GB2 ,C � IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (9)

\ 5 � |2B1 , 5 � 2B2 , 5 |IB1 ,B2 ,C 8 5 2 �@ ,8B1, B2 2 (,8)C 2 T (10)
\
5
 " 5 (1 � IB1 ,B2 ,C ) + |2B1 , 5 � 2B2 , 5 |IB1 ,B2 ,C 8 5 2 �@ ,8B1, B2 2 (,)C 2 T (11)

IB1 ,B2 ,C 2 B 8B1, B2 2 (,8)C 2 T (12)

\ 5 2 R+0 8 5 2 �@ (13)
\
5
2 R+0 8 5 2 �@ (14)

Constraints (7)-(9) ensure the I variable take the value described. Constraints (10)-
(11) force \ 5 and \

5
to stay above and below all realized differences, respectively. We

set " 5 = maxB1,B22({|2B1 , 5 � 2B2 , 5 |}.

To compute the values [
5
, [
5

we will slightly abuse of notation and use [C 5 ✓ and
[C 5 to indicate for characteristic 5 2 �2 and team )C 2 T whether the category ✓ is
represented and the number of different categories represented in the team, respectively.
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GBC  [C 5 ✓ 8B 2 {B | B 2 ( ^ 2B 5 = ✓}, ✓ 2 ! 5 , 5 2 �2,8C 2 T (15)

[C 5 ✓ 
’

B2( |2B 5 =✓
GBC 8✓ 2 ! 5 , 5 2 �2,8C 2 ⌧8 (16)

[C 5 =
’
✓2� 5

[C 5 ✓ 8 5 2 �2,8C 2 T (17)

[
5
� [C 5 8 5 2 �2,8)C 2 T (18)

[
5

 [C 5 8 5 2 �2,8)C 2 T (19)

[C 5 ✓ 2 B 8✓ 2 ! 5 ,8 5 2 �2,8C 2 T (20)
[C 5 2 Z+0 8 5 2 �2,8C 2 T (21)
[
5
2 Z+0 8 5 2 �2 (22)

[
5

2 Z+0 8 5 2 �2 (23)

Constraints (15)-(16) ensure [C 5 ✓ is either one or zero depending on whether any
student among those who have that category are assigned to the team. Constraints (17)
collect the number of different categories present in the team. Constraints (18) and
(19) force [

5
and [

5

to stay above and below the number of categories over all teams,
respectively.

We can finally state the overall MILP model with the objective function defined in
the main text:

lex max
f2⌃

(i1 (f), . . . , i2< (f))

subject to (1) � (6)
(7) � (14)
(15) � (23).
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Abstract. Given an undirected graph⌧ (+ , ⇢), the Vertex Coloring Problem(VCP)
requires to assign a color to each vertex in such a way that no two adjacent vertices
have the same color and the number of colors used is minimized. A novel heuristic
for graph coloring problem and its application to a timetable construction online
platform is presented in this paper. It shows better results than the previous heuris-
tic DSatur [9]. The online platform shows very fast timetable construction and
very convenient UX. We want to demonstrate our platform in front of timetable
specialists.

Keywords: Graph Coloring, Heuristic Algorithm, Online Platform

1 Introduction

Given an undirected graph ⌧ (+ , ⇢), the Vertex Coloring Problem(VCP) requires to
assign a color to each vertex in such a way that no two adjacent vertices have the same
color and the number of colors used is minimized. The Vertex Coloring Problem is a
well-known NP-hard Problem [1] with real world applications in many areas including
scheduling [2], timetabling [3], register allocation [4], and communication networks [5].
Despite its importance to real-world applications, few exact algorithms for VCP have
been found, and are able to solve only small instances up to 100 vertices for random
graphs[6,7,8]. Many heuristic approaches have been proposed to deal with graphs of
hundreds or thousands of vertices. The first heuristic approaches are derived based on
greedy construction algorithms. The best-known greedy techniques are the maximum
saturation degree(DSatur) and the Recursive Largest First(RLF) heuristics proposed by
Brelaz [9] and by Leighton [10], respectively. Many meta-heuristic algorithms have
been proposed for VCP based on tabu search [11], simulated annealing [12], genetic
algorithm [13], linear programming [15], etc. In this paper, a novel heuristic for VCP
with good performance is designed. In section 2, a novel heuristic PAE is shown. In
section 3, a computational comparison result between PAE and DSatur is shown. In
section 4, we show our timetable construction online platform that uses the algorithm
PAE.
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2 A Potential-based Algorithm for the Vertex Coloring Problem

In the following, a novel potential-based algorithm PAE(G, k) for VCP with exponential
decay is described. The algorithm PAE(G, k) is checking whether the given graph G
can be colored using at most : colors.

Algorithm 2: Potential-based Algorithm for the Vertex Coloring Problem with
Exponential Decay(PAE)

Algorithm: PAE(G, k)
Data: G(V,E) and k
Result: colorability of vertices in G(V,E) using at most : colors
= ;4=(+)
(C02:  []
for E  1 to = do

qE = =
end
& is a priority queue containing all the vertices with their priorities which means the

number of distinct colors of adjacent vertices for each vertex
while there are any uncolored vertices do

pop vertices from & until we get a vertex E with the recent update
color E with the lowest usable color
if the number of used colors is greater than k then

if qE is zero then
return False

end
qE = qE//2
pop vertices from Stack uncoloring(updating) the vertices up to Stack[qE]
color E with the lowest usable color

else
qE = <8=(qE , ;4=((C02:))

end
append E to Stack

end
return True

Intuitively, the potential qE for each vertex E means the highest possible order of E
that leads to valid coloring using at most : colors. We do a binary search on the number
of usable colors : to determine the tight : , this algorithm is called PAE. In this paper, as
the priority of each element in the queue of the algorithm PAE, we are using the priority
of DSatur [9] heuristic which is the number of distinct colors of adjacent vertices for
each vertex. When the number of distinct colors of adjacent vertices for each vertex are
same, the tie is broken by the higher degree of each vertex. The algorithm PAE is very
simple and shows better performance than DSatur heuristic [9]. The time complexity of
PAE is $ ( |+ |2 log( |+ | + |⇢ |)). It can deal with graphs with thousands of vertices.
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3 Experimental Results

We compare the performance of PAE and DSatur using the subset of the DIMACS
benchmark graph coloring instances. The result is shown in the Table 1. We implemented
the algorithms PAE and DSatur using Python. We run the program on a laptop machine
with an Intel Core i7 CPU 2.30 GHz, and 24GB RAM. Large instances from the DIMACS
benchmark whose number of vertices is greater than 100 are used for the comparison
test. For all the cases, the algorithm PAE showed better or equal results on the aspect
of the number of colors used. In the comparison table, boldfaced numbers mean that
PAE shows better results than DSatur. The time in the table means the elapsed seconds
until the program is finished. Note that the program is always finished with a coloring.
Especially, in the class scheduling graphs shool1 and shool1_nsh, PAE showed almost
optimal results. This is important since the algorithm PAE of this paper is used for an
online platform that services the automatic construction of an exam timetable. j⇤ means
the best-known solution according to the paper by Malaguti et. al [16].

PAE DSatur [9]
instance k time k time j

⇤

DSJC1000.1 25 277 27 0.214 20
DSJC1000.5 113 3309 115 0.968 83
DSJC1000.9 296 8162 310 2.156 224
DSJC125.1 6 0.093 6 0.016 5
DSJC125.5 20 2.223 22 0.028 17
DSJC125.9 48 9.056 51 0.033 44
DSJC250.1 10 2.672 11 0.025 8
DSJC250.5 35 24 37 0.074 28
DSJC250.9 84 107 90 0.125 72
DSJC500.1 15 39 15 0.054 12
DSJC500.5 62 319 66 0.248 48
DSJR500.1 12 0.095 13 0.019 12
DSJR500.5 125 163 132 0.279 122

latin_square_10 124 2220 132 1.066 99
le450_15a 16 2.423 17 0.048 15
le450_15b 16 1.586 16 0.039 15
le450_15c 23 28 24 0.076 15
le450_15D 23 35 24 0.083 15
le450_25c 27 34 29 0.081 26
le450_25d 28 20 28 0.079 26
le450_5a 9 3.435 9 0.028 5
le450_5b 9 5 10 0.022 5
le450_5d 7 3.721 8 0.063 5
school1 14 3.877 22 0.077 14

school1_nsh 15 4.303 25 0.059 14
Table 1: Performace Comparison between PAE and DSatur
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4 Implementation of the Online Timetabling Platform DaAlgo

By generalizing the graph coloring idea of this paper, an online timetabling platform
https://www.daalgo.org is implemented. The online platform services making exam
timetables automatically using the customer’s data about students’ registrations for
courses. We use an Excel file for input data. We process the input data using an algorithm
that generalizes PAE, and then render the exam timetable to a browser after getting the
constructed timetable from the backend. For the backend, we used FAST API, Postgres
SQL, and Python. For the front end, we used React. For the cloud, we used the AWS
cloud. We used AWS RDS, S3, Amplify, EC2, etc. See the Fig. 1 for the AWS architecture
of our platform. Fig. 2 shows a result of an exam timetable construction which is rendered
on the Chrome web browser. After rendering the exam timetable on the web browser,
we can use drag and drop to change the exam schedules of some courses. Finally, we
can download the exam timetable as the Excel format. We can make the exam timetable
automatically and modify the timetable on the same platform at once.

Fig. 1: AWS Architecture of DaAlgo Plat-
form Fig. 2: The Result Exam Timetable

5 Concluding Remarks

In this abstract, we presented a novel heuristic for VCP which shows very good perfor-
mance for school-related graphs. We apply the algorithm to implement an online service
platform that constructs an exam timetable based on the data of students’ registration
information for courses. The online platform is very fast to make an exam timetable
automatically and provides users with a very new UX. We will share our novel ideas
and our creative timetable service platform.
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